首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16666篇
  免费   898篇
  国内免费   6185篇
安全科学   1300篇
废物处理   1053篇
环保管理   1364篇
综合类   9727篇
基础理论   2597篇
环境理论   1篇
污染及防治   5601篇
评价与监测   786篇
社会与环境   613篇
灾害及防治   707篇
  2024年   29篇
  2023年   283篇
  2022年   816篇
  2021年   763篇
  2020年   603篇
  2019年   517篇
  2018年   667篇
  2017年   775篇
  2016年   906篇
  2015年   1096篇
  2014年   1354篇
  2013年   1686篇
  2012年   1436篇
  2011年   1469篇
  2010年   1212篇
  2009年   1197篇
  2008年   1296篇
  2007年   1053篇
  2006年   1059篇
  2005年   677篇
  2004年   504篇
  2003年   572篇
  2002年   530篇
  2001年   384篇
  2000年   466篇
  1999年   406篇
  1998年   336篇
  1997年   349篇
  1996年   307篇
  1995年   240篇
  1994年   177篇
  1993年   146篇
  1992年   137篇
  1991年   81篇
  1990年   70篇
  1989年   28篇
  1988年   30篇
  1987年   22篇
  1986年   17篇
  1985年   11篇
  1984年   7篇
  1983年   11篇
  1982年   13篇
  1981年   8篇
  1979年   1篇
  1976年   1篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
In this work, Bi2XO6 (X = W, Mo) are synthesized at different temperatures. The results of tests find the optimal temperatures of Bi2WO6 and Bi2MoO6 are 180 and 160°C (BW-180, BM-160). Then, BW-180 and BM-160 are further compounded with different contents of CuS. The results of photoelectrochemical (PEC) tests show that CuS can improve the PEC performance of semiconductor materials, and it has better performance when CuS mass fraction is 5%. These maybe the photoelectron potentials generated by CuS/Bi2XO6 (X = Mo, W) heterojunction reduce the combination of photogenerated electrons and holes. When the PEC sensor based on 5%-CuS/BW-180 detects Cr(VI), it has a linear range of 1–80 μmol/L with detection limit of 0.95 μmol/L, while the PEC sensor based on 5%-CuS/BM-160 detects Cr(VI) has a linear range of 0.5–230 μmol/L and a detection limit of 0.12 μmol/L. Thus, 5%-CuS/Bi2XO6 has potential application in hexavalent chromium detection.  相似文献   
172.
Environmental Science and Pollution Research - The massive use of silver nanoparticles (AgNPs) is potentially harmful to exposed humans. Although previous studies have found that AgNPs can induce...  相似文献   
173.

Waterpipe (aka hookah) tobacco smokers are exposed to toxicants that can lead to oxidative DNA and RNA damage, a precursor to chronic disease formation. This study assessed toxicant exposure and biomarkers of DNA [8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG)] and RNA [8-oxo-7,8-dihydroguanosine (8-oxoGuo)] oxidative damage during smoking of flavored and non-flavored waterpipe tobacco. Thirty waterpipe smokers completed two counterbalanced 2-h lab waterpipe smoking sessions (flavored vs. non-flavored waterpipe tobacco). Urinary concentrations of 8-oxodG and 8-oxoGuo and expired carbon monoxide (eCO) were measured before and after the smoking sessions. A significant increase in the urinary concentrations of 8-oxodG (from 2.12 ± 0.83 to 2.35 ± 0.91 ng/mg creatinine, p = 0.024) and 8-oxoGuo (from 2.96 ± 0.84 to 3.45 ± 0.76 ng/mg creatinine, p = 0.003) were observed after smoking the non-flavored and flavored waterpipe tobacco, respectively. Our results also showed that the mean ± SD of eCO increased significantly after smoking the flavored (from 1.3 ± 1.1 to 20.3 ± 23.6 ppm, p < 0.001) and non-flavored waterpipe tobacco (from 1.8 ± 1.2 to 24.5 ± 26.1 ppm, p < 0.001). There were no significant differences in the means of 8-oxodG (p = 0.576), 8-oxoGuo (p = 0.108), and eCO (p = 0.170) between the flavored and non-flavored tobacco sessions. Smoking non-flavored and flavored waterpipe tobacco leads to oxidative stress and toxicant exposure. Our findings add to the existing evidence about the adverse effects of waterpipe tobacco smoking (WTS) and the need for strong policies to inform and protect young people from the risks of WTS.

  相似文献   
174.
Environmental Science and Pollution Research - In this study, the degradation performance of nutrients in zeolite trickling filter (ZTF) with different influent C/N ratios and aeration conditions...  相似文献   
175.

Nanoplastics are widely distributed in freshwater environments, but few studies have addressed their effects on freshwater algae, especially on harmful algae. In this study, the effects of polystyrene (PS) nanoplastics on Microcystis aeruginosa (M. aeruginosa) growth, as well as microcystin (MC) production and release, were investigated over the whole growth period. The results show that PS nanoplastics caused a dose-dependent inhibitory effect on M. aeruginosa growth and a dose-dependent increase in the aggregation rate peaking at 60.16% and 46.34%, respectively, when the PS nanoplastic concentration was 100 mg/L. This caused significant growth of M. aeruginosa with a specific growth rate up to 0.41 d?1 (50 mg/L PS nanoplastics). After a brief period of rapid growth, the tested algal cells steadily grew. In addition, the increase in PS nanoplastics concentration promoted the production and release of MC. When the PS nanoplastic concentration was 100 mg/L, the content of the intracellular (intra-) and extracellular (extra-) MC increased to 199.1 and 166.5 μg/L, respectively, on day 26, which was 31.4% and 31.1% higher, respectively, than the control. Our results provide insights into the action mechanism of nanoplastics on harmful algae and the potential risks to freshwater environments.

  相似文献   
176.
Environmental Science and Pollution Research - Groundwater has been recognized as one of the most critical and vulnerable natural sources which is utilized in potable water supply, agricultural...  相似文献   
177.
Environmental Science and Pollution Research - For effective photocatalytic pollutant degradation on bismuth tungstate (Bi2WO6), it is vital to enhance the photogenerated charge separation and the...  相似文献   
178.
Environmental Science and Pollution Research - In the process of water treatment, excessive nitrogen and phosphorus pollutants are of great concern. Therefore, we prepared nanoscale zerovalent iron...  相似文献   
179.
Environmental Science and Pollution Research - It is of great significance for the coordinated development of the environment and the economy to study the impact of the human driving factors of...  相似文献   
180.

Characterization of the typical petroleum pollutants, polycyclic aromatic hydrocarbons (PAHs) and n-alkanes, and indigenous microbial community structure and function in historically contaminated soil at petrol stations is critical. Five soil samples were collected from a petrol station in Beijing, China. The concentrations of 16 PAHs and 31 n-alkanes were measured by gas chromatography-mass spectrometry. The total concentrations of PAHs and n-alkanes ranged from 973 ± 55 to 2667 ± 183 μg/kg and 6.40 ± 0.38 to 8.65 ± 0.59 mg/kg (dry weight), respectively, which increased with depth. According to the observed molecular indices, PAHs and n-alkanes originated mostly from petroleum-related sources. The levels of ΣPAHs and the total toxic benzo[a]pyrene equivalent (ranging from 6.41 to 72.54 μg/kg) might exert adverse biological effects. Shotgun metagenomic sequencing was employed to investigate the indigenous microbial community structure and function. The results revealed that Proteobacteria and Actinobacteria were the most abundant phyla, and Nocardioides and Microbacterium were the important genera. Based on COG and KEGG annotations, the highly abundant functional classes were identified, and these functions were involved in allowing microorganisms to adapt to the pressure from contaminants. Five petroleum hydrocarbon degradation-related genes were annotated, revealing the distribution of degrading microorganisms. This work facilitates the understanding of the composition, source, and potential ecological impacts of residual PAHs and n-alkanes in historically contaminated soil.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号