首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2207篇
  免费   268篇
  国内免费   828篇
安全科学   238篇
废物处理   100篇
环保管理   216篇
综合类   1558篇
基础理论   310篇
污染及防治   504篇
评价与监测   152篇
社会与环境   113篇
灾害及防治   112篇
  2024年   14篇
  2023年   82篇
  2022年   198篇
  2021年   155篇
  2020年   195篇
  2019年   121篇
  2018年   121篇
  2017年   135篇
  2016年   113篇
  2015年   162篇
  2014年   165篇
  2013年   226篇
  2012年   215篇
  2011年   202篇
  2010年   151篇
  2009年   162篇
  2008年   149篇
  2007年   127篇
  2006年   110篇
  2005年   96篇
  2004年   62篇
  2003年   43篇
  2002年   61篇
  2001年   40篇
  2000年   37篇
  1999年   26篇
  1998年   40篇
  1997年   24篇
  1996年   26篇
  1995年   9篇
  1994年   6篇
  1993年   6篇
  1992年   7篇
  1991年   8篇
  1990年   2篇
  1988年   2篇
  1982年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有3303条查询结果,搜索用时 125 毫秒
891.
Enrichment culturing of sludge taken from an industrial wastewater treatment pond led to the identification of a bacterium (Klebsiella jilinsis H. Zhang) that degrades chlorimuron-ethyl with high efficiency. Klebsiella jilinsis strain 2N3 grows with chlorimuron-ethyl as the sole nitrogen source at the optimal temperature range of 30–35°C and pH values between 6.0–7.0. In liquid medium, the degradation activity was further induced by chlorimuron-ethyl. Degradation rates followed the pesticide degradation kinetic equation at concentrations between 20 and 200 mg L?1. Using initial concentrations of 20 and 100 mg L?1, the degradation rates of chlorimuron-ethyl were 83.5 % and 92.5 % in 12 hours, respectively. At an initial concentration higher than 200 mg L?1, the degradation rate decreased slightly as the concentration increased. The 2N3 strain also degraded the sulfonylurea herbicides ethametsulfuron, metsulfuron-methyl, nicosulfuron, rimsulfuron, and tribenuron-methyl. This study provides scientific evidence and support for the application of K. jilinsis in bioremediation to reduce environmental pollution.  相似文献   
892.
In this study, the effects of tetracycline exposure on wheat growth and the microbial community structure in the rhizosphere were investigated under hydroponic culture conditions. Exposure to various concentrations of tetracycline resulted in significant suppression of the growth of wheat roots and shoots, with minimum doses of 0.8 mg L?1 and 4 mg L?1 resulting in inhibition rates of 32% and 15.4%, respectively. Complete inhibition of the growth of these two parts of wheat plants was observed in response to treatment with tetracycline at 20 mg L?1 and 100 mg L?1, respectively. However, the germination of wheat seeds was not sensitive to exposure to tetracycline. The effects of tetracycline exposure on the microbial community in the wheat rhizosphere were evaluated through traditional cultivation and molecular biological analyses. The cultivation results indicated that bacteria were the dominant population, being present in concentrations of 1× 108–2.45× 109CFUs mL?1, although 39% to 87% inhibition occurred in response to tetracycline. The concentration of fungi increased in all tetracycline treated samples to 2.5 to 15.8 times that of the control. The highest concentration of fungi (4.27× 108 CFU mL?1) was observed in response to 60 mg L?1 tetracycline after 15 days of cultivation. In this stage, a large amount of fungal colonies was observed on the surface of the culture solution, the wheat roots became rotted and the plants became atrophic or even died. Molecular biological analysis indicated that the bacterial community structure was significantly different in samples that were exposed to high levels of tetracycline (over 20 mg L?1) than in samples that were exposed to lower concentrations. As the concentration of tetracycline increased, the diversity of the bacteria decreased. Additionally, several dominant sensitive species such as Sphingobacterium multivorum were suppressed by tetracycline, while some resistant species such as Acinetobacter sp. appeared or were conserved. The bacteria population tended to stabilize when the drug concentration exceeded 40 mg L?1.  相似文献   
893.
In this study, the effect of ciprofloxacin (CIP) on the catabolic diversity of soil microbial communities was evaluated. Soil samples were spiked with ciprofloxacin (0, 1, 5 and 50 mg?kg?1) and were incubated for 1, 3, 9, 22 and 40 days. Untreated controls received only water. The functional diversity of the microbial community studied was characterized using a catabolic response profile (CRP). Six substrate groups were tested: carbohydrates, amino acids, carboxylic acids, aromatic chemicals, alcohols and polymers. After 40 days, the CIP concentrations in the soil samples ranged from 25% to 58% of the initial concentrations. Soil respiratory responses to the individual substrates D-glucose, lactose, D-mannose, L-glutamic, Na-citrate, malic acid and inosine were inhibited at the high CIP concentrations (5 and 50 mg·kg?1) in the soils and were increased at the lowest CIP concentration (1 mg·kg?1). Soil respiration was inhibited at all of the CIP concentrations after the addition of D-galactose and glycerol. The CIP concentration and incubation time explained 45.3% of the variance of the catabolic responses. The CRP analysis clearly discriminated among the different CIP concentrations. The results suggest that CIP strongly affects the catabolic diversities of soil microbial communities and that its effect is more significant than that of incubation time.  相似文献   
894.
In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress.  相似文献   
895.
The rhizosphere plays an important role in altering cadmium (Cd) solubility in paddy soils and Cd accumulation in rice. However, more studies are needed to elucidate the mechanism controlling rice Cd solubility and bioavailability under different rhizosphere conditions to explain the discrepancy of previous studies. A rice culture with nutrient solution and vermiculite was conducted to assess the effects of pH, Eh, and iron (Fe) concentration on Cd, Fe fractions on the vermiculite/root surface and their uptake by rice. The solution pH was set from 4.5 to 7.5, with additions of Fe (30 and 50 mg L?1) and Cd (0.5 and 0.9 mg L?1). At pH 5.5, the Eh in the rice rhizosphere was higher whereas transpiration, Cd2+, and Fe2+ adsorption on the vermiculite/root surface and accumulation in rice were lower than the other pH treatments. Cadmium addition had no impact on pH and Eh in rice rhizosphere while Fe addition decreased pH and increased Eh significantly. Compared with control, Fe addition resulted in the decrease of rhizosphere Cd, Fe solubility and bioavailability. Higher redox potential in the rice rhizosphere resulted in the decline of transpiration, Cd, and Fe accumulation in the rice tissues, suggesting that the transfer of two elements from soil to rice was depressed when the rhizosphere was more oxidized.  相似文献   
896.
In a pot experiment, pig manure (PM) and chicken manure (CM) were applied to an acidic soil at application rates of 2%, 4% and 8% (W/W) to evaluate their effects on the growth, Cu and Zn uptake and transfer of five cultivars of pakchoi (Brassica chinesis L.). The results showed that alkaline manures significantly increased the biomass of pakchois, and also pH and electrical conductivity of the soil. Both 0.01 M CaCl2 and 1.0 M NH4NO3 salt solutions predict the Zn transfer from soil to pakchois well, but not for Cu. For the cultivar Siyueman, the transfer factors of Cu (or Zn) in the PM treatments were higher than that in the CM treatments. In our experiment the Cu and Zn concentrations in pakchois did not exceed the Chinese Food Hygiene Standard, but more attention should be paid to heavy metals risk on pakchois at lower soil pH and salt impairment by manures application.  相似文献   
897.
Three common polyphenol compounds Gallic Acid (GA), Pyrogallic Acid (PA) and Catechol (CA) are known to have allelochemical-exhibiting inhibitory effects on the growth of the cyanobacterium Microcystis aeruginosa (M. aeruginosa). Metabolism and antioxidant responses in M. aeruginosa were investigated to elucidate the mechanism by which the three polyphenols inhibit algal growth. The inhibition effects of polyphenols were in the order of CA > PA > GA. The GA and CA exposures increased protein contents, superoxide dismutase (SOD) activity, catalase (CAT) activity and soluble sugar, especially for exposure to GA of 25 mg L?1. Soluble sugar content increased significantly especially when exposed to CA for 72 h. When exposed to PA, protein content, and SOD and CAT activities initially increased but over longer treatment time the activities decreased, in contrast to sugar content. Our results suggest that PA exposure for longer periods of time may inhibit catabolism action, while CA exposure could induce more oxide stress than GA or PA. The overall study showed that polyphenol-induced oxidative damage might be responsible for polyphenol inhibition on M. aeruginosa growth. The increases in cellular antioxidant enzymes and soluble sugar may have been to counteract the oxidative stress.  相似文献   
898.
This study deals with the evaluation of water quality of the Three Gorges Reservoir (TGR) in order to assess its suitability as a raw water source for drinking water production. Therefore, water samples from (1) surface water, (2) tap water, and (3) wastewater treatment plant effluents were taken randomly by 2011–2012 in the area of the TGR and were analyzed for seven different organic contaminant groups (207 substances in total), applying nine different analytical methods. In the three sampled water sources, typical contaminant patterns were found, i.e., pesticides and polycyclic aromatic hydrocarbons (PAH) in surface water with concentrations of 0.020–3.5 μg/L and 0.004–0.12 μg/L, disinfection by-products in tap water with concentrations of 0.050–79 μg/L, and pharmaceuticals in wastewater treatment plant effluents with concentrations of 0.020–0.76 μg/L, respectively. The most frequently detected organic compounds in surface water (45 positives out of 57 samples) were the pyridine pesticides clopyralid and picloram. The concentrations might indicate that they are used on a regular basis and in conjunction in the area of the TGR. Three- and four-ring PAH were ubiquitously distributed, while the poorly soluble five- and six-ring members, perfluorinated compounds, polychlorinated biphenyls, and polybrominated diphenyl ethers, were below the detection limit. In general, the detected concentrations in TGR are in the same range or even lower compared to surface waters in western industrialized countries, although contaminant loads can still be high due to a high discharge. With the exception of the two pesticides, clopyralid and picloram, concentrations of the investigated organic pollutants in TGR meet the limits of the Chinese Standards for Drinking Water Quality GB 5749 (Ministry of Health of China and Standardization Administration of China 2006) and the European Union (EU) Council Directive 98/83/EC on the quality of water intended for human consumption (The Council of the European Union 1998), or rather, the EU Directive on environmental quality standards in the field of water policy (The European Parliament and The Council of the European Union 2008). Therefore, the suggested use of surface water from TGR for drinking water purposes is a valid option. Current treatment methods, however, do not seem to be efficient since organic pollutants were detected in significant concentrations in purified tap water.  相似文献   
899.
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93–0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg?1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.  相似文献   
900.
利用微波热解城市污水污泥是实现污泥无害化、减量化和资源化的有效出路之一,但热解过程中产生的恶臭气体(如H2S等)也会对大气环境造成严重的影响.以微波热解城市污水污泥10 min所收集的气体为研究对象,研究了热解终温、污泥含水率、升温速率及矿物催化剂种类4个因素对热解过程中H2S产量的影响.结果表明,随着热解终温的升高,城市污水污泥微波热解过程中的H2S产量逐渐上升,800℃时H2S产量为5.86 mg/g(以干污泥计,下同);含水率在50%~80%时,随着含水率的增加,城市污水污泥微波热解过程中的H2S产量逐渐上升,当含水率增至90%时,污泥出现了泥水分层现象,致使后续热解反应无法进行,故没有H2S产生;升温速率越快,热解反应的活化能越高,反应不易进行,H2S产量降低;添加矿物催化剂能有效固硫,且雷尼镍基催化剂的效果更好,热解终温为800℃时的H2S产量为4.15 mg/g,较不添加矿物催化剂时降低约30%;可通过铜铁吸收法和活性炭吸附两步工艺对热解产生的H2S加以吸收处理,处理后的H2S排放浓度满足《恶臭污染物排放标准》(GB 14554-93)中的厂界一级标准限值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号