首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
安全科学   4篇
废物处理   2篇
环保管理   3篇
综合类   5篇
基础理论   8篇
污染及防治   19篇
评价与监测   2篇
社会与环境   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2016年   1篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1993年   2篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
  1981年   2篇
  1977年   1篇
  1967年   1篇
  1965年   1篇
  1959年   1篇
  1943年   1篇
排序方式: 共有44条查询结果,搜索用时 93 毫秒
31.
A method for determination of antibiotics in hospital sewage water has been developed and validated. Analogue internal standards for fluoroquinolones, sulfonamides, trimethoprim, beta-lactams (penicillins and cephalosporins), nitroimidazoles and tetracyclines were successfully used for calibration and shown to generally improve precision compared to external calibration. Matrix components caused ion suppression/enhancement effects during the MS detection for all analytes studied. Two effects were observed: general suppression and short-term variations in the MS response. In the hospital sewage water large temporal variations in the analyte concentration were observed during the course of the sampling period (seven grab samples in 13 h). Analyte concentrations varied within the following ranges (in microg l(-1)): ciprofloxacin, 3.6-101.0; metronidazole, 0.1-90.2; sulfamethoxazole, 0.4-12.8; ofloxacin, 0.2-7.6; trimethoprim, 0.6-7.6; and doxycycline, 0.6-6.7.  相似文献   
32.
33.
Populations of Greater Sage-Grouse (Centrocercus urophasianus) have declined by 69-99% from historic levels, and information on population dynamics of these birds at a landscape scale is essential to informed management. We examined the relationships between hen survival and a suite of landscape-scale habitat and environmental conditions. We radio-marked 237 female Sage-Grouse and measured 426 vegetation plots during 2001-2004 at four sites in a 3200-km2 landscape in north-central Montana, USA. We used program MARK to model monthly survival rates for 11 seasonal intervals. There was strong support for the best-approximating model (AICc weight = 0.810), which indicated that (1) hen survival varied by season within years and by year within seasons, (2) nesting hens had higher nesting-season survival than non-nesting hens, and (3) individuals at one site had lower hunting-season survival than at other sites. We observed considerable variation in hen survival. Process variation was 0.255, with an expected range of annual survival of 0.12 to 1.0. The ratio of process to total variation was 0.999, indicating that observed variation was real and not attributable to sampling variation. We observed a nearly fourfold difference in maximum and minimum annual survival, ranging from 0.962 +/- 0.024 (mean +/- SE) for nesting hens in 2001-2002 to 0.247 +/- 0.050) for non-nesters in 2003-2004. Low annual survival in 2003 resulted from the compounded effects of a West Nile virus outbreak in August and a severe winter in 2003-2004. Increased hen mortality associated with severe winter weather contrasts with prior beliefs that Sage-Grouse populations are typically unaffected by winter weather conditions and underscores the importance of protecting winter sagebrush (Artemisia spp.) habitats.  相似文献   
34.
Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg(o)) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg(o) to the air if it is initially present or formed by chemical reduction of Hg(II) to Hg(o) within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (approximately 100 mg/hr) and from dumpsters in the field (approximately 30 mg/hr for 1000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg(o) signals, indicating that much of the Hg was already present in a metallic (Hg(o)) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(o), the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg(o) at 10 to >100 microg/hr and continued to act as near constant sources for several days.  相似文献   
35.
Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg(O)) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from approximately 1-10 ng m(-2) hr(-1) over aged landfill cover, from approximately 8-20 mg/hr from LFG flares (LFG included Hg(O) at microg/m3 concentrations), and from approximately 200-400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(O), the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10-50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   
36.
Climate change alters species distributions by shifting their fundamental niche in space through time. Such effects may be exacerbated by increased inter-specific competition if climate alters species dominance where competitor ranges overlap. This study used census data, telemetry and stable isotopes to examine the population and foraging ecology of a pair of Arctic and temperate congeners across an extensive zone of sympatry in Iceland, where sea temperatures varied substantially. The abundance of Arctic Brünnich’s guillemot Uria lomvia declined with sea temperature. Accessibility of refugia in cold water currents or fjords helped support higher numbers and reduce rates of population decline. Competition with temperate Common guillemots Uria aalge did not affect abundance, but similarities in foraging ecology were sufficient to cause competition when resources are limiting. Continued warming is likely to lead to further declines of Brünnich’s guillemot, with implications for conservation status and ecosystem services.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01650-7.  相似文献   
37.
Abstract

Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg0) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg0 to the air if it is initially present or formed by chemical reduction of HgII to Hg0 within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (~100 mg/hr) and from dumpsters in the field (~30 mg/hr for 1,000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg0 signals, indicating that much of the Hg was already present in a metallic (Hg0) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg0 at 10 to >100 μg/hr and continued to act as near constant sources for several days.  相似文献   
38.
39.
Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and condition. Density-dependent habitat selection for shelter and individual growth dynamics were therefore interdependent ecological processes that help to explain how patchy reef habitat sustains gag production. Moreover, gag selected shelter at the expense of maximizing their growth. Thus, mobile reef fishes could experience density-dependent effects on growth, survival, and/or reproduction (i.e., demographic parameters) despite reduced stock sizes as a consequence of fishing.  相似文献   
40.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号