首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11155篇
  免费   500篇
  国内免费   3922篇
安全科学   892篇
废物处理   683篇
环保管理   986篇
综合类   5994篇
基础理论   1853篇
环境理论   2篇
污染及防治   3858篇
评价与监测   481篇
社会与环境   378篇
灾害及防治   450篇
  2024年   13篇
  2023年   175篇
  2022年   564篇
  2021年   462篇
  2020年   350篇
  2019年   301篇
  2018年   394篇
  2017年   510篇
  2016年   464篇
  2015年   613篇
  2014年   893篇
  2013年   1156篇
  2012年   1040篇
  2011年   1011篇
  2010年   798篇
  2009年   767篇
  2008年   831篇
  2007年   702篇
  2006年   589篇
  2005年   424篇
  2004年   350篇
  2003年   398篇
  2002年   343篇
  2001年   296篇
  2000年   290篇
  1999年   270篇
  1998年   267篇
  1997年   255篇
  1996年   231篇
  1995年   176篇
  1994年   126篇
  1993年   130篇
  1992年   109篇
  1991年   84篇
  1990年   54篇
  1989年   26篇
  1988年   28篇
  1987年   10篇
  1986年   17篇
  1985年   11篇
  1984年   11篇
  1983年   8篇
  1982年   10篇
  1981年   8篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
排序方式: 共有10000条查询结果,搜索用时 859 毫秒
701.
702.
703.
A simple online headspace solid-phase microextraction (HS-SPME) coupled with the gas chromatography-mass spectrometry (GC-MS) method was developed for simultaneous determination of trace amounts of nine estrogenic odorant alkylphenols and chlorophenols and their derivatives in water samples. The extraction conditions of HS-SPME were optimized including fiber selection, extraction temperature, extraction time, and salt concentration. Results showed that divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was the most appropriate one among the three selected commercial fibers, and the optimal extraction temperature, time, and salt concentration were 70 °C, 30 min, and 0.25 g/mL, respectively. The developed method was validated and showed good linearity (R 2?>?0.989), low limit of detection (LOD, 0.002–0.5 μg/L), and excellent recoveries (76–126 %) with low relative standard deviation (RSD, 0.7–12.9 %). The developed method was finally applied to two surface water samples and some of these target compounds were detected. All these detected compounds were below their odor thresholds, except for 2,4,6-TCAS and 2,4,6-TBAS wherein their concentrations were near their odor thresholds. However, in the two surface water samples, these detected compounds contributed to a certain amount of estrogenicity, which seemed to suggest that more attention should be paid to the issue of estrogenicity rather than to the odor problem.  相似文献   
704.

The present study aimed to improve the performance of microbial fuel cells (MFCs) by using an intermittent connection period without power output. Connecting two MFCs in parallel improved the voltage output of both MFCs until the voltage stabilized. Electric energy was accumulated in two MFCs containing heavy metal ions copper, zinc, and cadmium as electron acceptors by connection in parallel for several hours. The system was then switched to discharge mode with single MFCs with a 1000-Ω resistor connected between anode and cathode. This method successfully achieved highly efficient removal of heavy metal ions. Even when the anolyte was run in sequencing batch mode, the insufficient voltage and power needed to recover heavy metals from the cathode of MFCs can be complemented by the developed method. The average removal ratio of heavy metal ions in sequencing batch mode was 67 % after 10 h. When the discharge time was 20 h, the removal ratios of zinc, copper, and cadmium were 91.5, 86.7, and 83.57 %, respectively; the average removal ratio of these ions after 20 h was only 52.1 % for the control group. Therefore, the average removal efficiency of heavy metal ions increased by 1.75 times using the electrons stored from the bacteria under the open-circuit conditions in parallel mode. Electrochemical impedance data showed that the anode had lower solution resistance and polarization resistance in the parallel stage than as a single MFC, and capacitance increased with the length of time in parallel.

  相似文献   
705.

Silicon-based fertilizers and soil amendments can have direct and indirect positive influences on cultivated plants. The solid forms of Si-based substances, the most widespread in use, are efficient only at high application rates due to their low level of solubility. Several types of Si-based substances such as fumed silica, slags from the iron and steel industry, modified slags, and a Si-rich product were tested using barley and pea as silicon accumulative and non-accumulative plants, respectively, at two application rates. The plants were grown under toxic concentrations of heavy metals in a greenhouse. Si-rich materials high in water-soluble Si had a positive effect at both the low and high application rates, and for both plant species. This type of substance can be regarded as Si fertilizer, demonstrating greater efficiency at a low application rate and lessened efficiency at a high application rate for protection of the cultivated plants against accumulation of the heavy metals.

  相似文献   
706.
With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance.  相似文献   
707.
Environmental Science and Pollution Research - Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due...  相似文献   
708.
Odor pollution is a big environmental problem caused by large-scale livestock production in China, and developing a practical way to reduce these odors is pressing. In this study, a combination of 0.2–1.0 U/mL lignin peroxidase (LiP) and one of three peroxides (H2O2, CaO2, 2Na3CO3·3H2O2) was examined for its efficiency in reducing the release of eight chemicals (propionic acid, isobutyric acid, isocaproic acid, isovaleric acid, phenol, p-cresol, indole, and skatole), NH3, H2S, and odor intensity from pig manure. The results showed an approximately 90% reduction in p-cresol, 40–60% reduction in odor intensity, 16.5–40% reduction in indolic compounds, and 25–40% reduction in volatile fatty acids. Being the electron acceptors of LiP, 2Na3CO3·3H2O2 and CaO2 performed better than H2O2 in reducing the concentration of eight chemicals, NH3, H2S, and odor intensity from pig manure. The effect of deodorization can last for up to 72 hr.

Implications: In China, one of the major environmental problems caused by confined feeding is odor pollution, which brings a major threat to the sustainability, profitability, and growth of the livestock industry. To couple the LiP with the electron acceptors, a low–cost, simple, and feasible method for odor removal was established in this study. Based on the study results, a practical treatment method was provided for odor pollution and supply the farm operators a more flexible time to dispose treated manure.  相似文献   

709.
Nonferrous metal is an important basis material for the development of the national economy, and its consumption directly affects economic development. It has great significance in the effective utilization of nonferrous metals, development of an environment-friendly society, and investigation of the decoupling of nonferrous metal consumption and GDP growth. The decoupling indicators for nonferrous metal consumption and GDP growth (D r) in China from 1995 to 2010 were calculated in this study, and the results were analyzed. A productive model based on BP neural network was established. Then, the decoupling indicators for nonferrous metal consumption and GDP growth in China for the period of 2011–2020 were predicted. For the period of 1995–2010, the annual average decoupling indicators were <1 for copper, aluminum, zinc, lead, and nickel, except for tin, which was 0.21. The analysis showed that the decoupling of nonferrous metal consumption and GDP growth is in a less optimistic situation to copper, aluminum, zinc, lead, and nickel in China from 1995 to 2010. The annual average decoupling indicator for tin was 0.21, which indicates relative decoupling. For the period of 2011–2020, the predicted decoupling indicators for copper, aluminum, zinc, lead, nickel, and tin were between 0 and 1. This finding indicates the implementation of relative decoupling. However, the total consumption of nonferrous metals did not decouple from GDP growth.  相似文献   
710.
Rebound effect derived from energy efficiency improvement has been widely invested. However, most of studies focus on the rebound effect of the energy composite level and neither distinguish nor compare different energy types. We compare the differences in energy saving and energy rebound between primary and secondary energy sources, and further decompose the rebound effect into production rebound part and final demand component. To do so, we add a module for rebound into a comparative state China-CGE model. We design and test two simulation scenarios using the model. In Scenario 1, all production sectors’ energy efficiency of using primary energy increases by 5%. In Scenario 2, all production sectors’ energy efficiency of using secondary energy increases by 5%. The results show that Scenario 2 leads to more GDP growth and more energy saving. Our scenarios show rebound effects range between 9.6% and 27.9%, and in general are higher when energy efficiency of using primary energy sources is improved. Our decomposition analysis shows that improving energy efficiency in production sectors would stimulates energy use of final demand. Indeed, the consumption side has significant contribution to rebound in secondary energy use, especially in crude oil and gas. This study reveals that improving efficiency of using secondary energy is better than improving that of primary energy, both in terms of economic impact and energy rebound. And complementary policies that prevent energy services prices from falling too much can be adopted to reduce rebound. Controlling residential energy use could also be effective in reducing rebound, this has particular implication to economies in which residential energy consumption are far from saturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号