首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1489篇
  免费   195篇
  国内免费   552篇
安全科学   161篇
废物处理   48篇
环保管理   117篇
综合类   1185篇
基础理论   231篇
污染及防治   267篇
评价与监测   95篇
社会与环境   86篇
灾害及防治   46篇
  2024年   14篇
  2023年   51篇
  2022年   143篇
  2021年   143篇
  2020年   146篇
  2019年   108篇
  2018年   105篇
  2017年   113篇
  2016年   99篇
  2015年   111篇
  2014年   109篇
  2013年   134篇
  2012年   139篇
  2011年   113篇
  2010年   101篇
  2009年   84篇
  2008年   69篇
  2007年   70篇
  2006年   59篇
  2005年   57篇
  2004年   39篇
  2003年   28篇
  2002年   37篇
  2001年   34篇
  2000年   24篇
  1999年   14篇
  1998年   17篇
  1997年   10篇
  1996年   15篇
  1995年   12篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
排序方式: 共有2236条查询结果,搜索用时 390 毫秒
141.
微生物反向电渗析(Microbial reverse-electrodialysis electrolysis cell, MREC)是一种通过微生物产生的电能与浓淡水盐差能耦合形成的一种新型的生物电化学技术.本文对MREC阴极回收H_2O_2的运行条件与影响因素及同步产能效应进行了研究.结果表明,浓淡水流速及浓度比是影响H_2O_2产生的关键因素.在浓淡水流速为2 mL·min~(-1)、浓/淡水比为100时,MREC可以获得最大H_2O_2产量711.4 mg·L~(-1),产H_2O_2速率达到最大33.65 mg·L~(-1)·h~(-1),阴极回收率为19.77%.同时,对应的产电性能达到1.25 W·m~(-2).MREC反应器能够在无需施加外界能源的情况下获得较高的H_2O_2产量,为H_2O_2绿色生产提供了一条新思路.  相似文献   
142.
铜前驱体对Cu/SSZ-13催化剂选择性催化氧化NH3性能的影响   总被引:1,自引:0,他引:1  
采用浸渍法制备了一系列Cu/SSZ-13(X)催化剂,考察不同铜前驱体对催化剂选择性催化氧化氨(NH_3-SCO)性能的影响,并通过ICP、N_2吸附-脱附、XRD、XPS、EPR、UV-Vis、NH_3-TPD和H_2-TPR等手段对催化剂进行物化性质表征.活性测试结果表明,不同铜前驱体制备的Cu/SSZ-13催化剂活性顺序为Cu/SSZ-13(N) Cu/SSZ-13(AC) Cu/SSZ-13(Cl) Cu/SSZ-13(O).其中Cu/SSZ-13(N)具有最佳的低温活性,在200℃反应温度下NH_3转化率达85.5%,且N_2选择性达到80%以上.XRD、EPR和UV-Vis分析表明,CuO和孤立Cu~(2+)是Cu/SSZ-13催化剂的主要铜物种.NH_3-TPD分析表明,以硝酸铜为前驱体制备的Cu/SSZ-13(N)具有更多的酸性位点,有利于提高催化剂的NH_3吸附能力.H_2-TPR结果表明,Cu/SSZ-13(N)的氧化还原性最强,具有最优异的NH_3活化能力,从而使催化剂呈现最好的低温NH_3-SCO活性.  相似文献   
143.
于2012年4月沿大九湖湿地平均分布10个采样点,各采集0~10、10~20以及20~30 cm浅层土壤,采用GC-MS对大九湖湿地浅层土壤中USEPA 16种优控多环芳烃(PAHs)进行分析,对其分布、组成、来源进行了详细的讨论,并对高山湿地PAHs污染标志物进行了浅析.结果表明,研究区0~10、10~20、20~30cm浅层土壤中∑16PAHs含量分别为48.55~984.73、14.36~806.47、12.84~1191.53 ng·g-1,均值分别为302.94、142.98、208.68 ng·g-1;7种致癌单体多环芳烃含量范围分别为21.20~844.29、2.96~592.06、0.66~964.70 ng·g-1,均值分别为197.25、93.16、147.16 ng·g-1,分别占总PAHs的65.12%、65.13%、69.08%;泥炭区PAHs含量明显高于非泥炭区,且已达到重度污染程度;PAHs组成以4、5、6环为主;结合IcdP/(IcdP+BghiP)及Pyr/BaP比值分析,推测大九湖湿地浅层土壤中PAHs主要来源于化石燃料及木材的燃烧,近年来旅游车辆的进入对PAHs的贡献较大;对浅层土壤中各单体PAH与PAHs总含量进行回归分析表明、苯并(b)荧蒽、茚(1,2,3cd)并芘、苯并(a)蒽作为泥炭地PAHs标志性化合物,用来评价PAHs的污染程度.  相似文献   
144.
采用超高效液相色谱-质谱联用仪分析了四川省10个地区自来水中12种全氟化合物(perfluoroalkyl substances, PFASs)的含量,其中全氟化合物浓度水平最高的是宜宾地区,∑PFASs为41.2 ng·L~(-1),浓度水平最低的是绵阳地区,为4.17 ng·L~(-1).全氟辛烷羧酸(perfluroroocantanoic acid,PFOA)是四川地区自来水中主要的PFASs,占总全氟化合物的28%~89%(宜宾地区8.6%),其次为全氟己酸(perfluorohexanoate,PFHxA)、全氟辛烷磺酸(perfluorooctane sulfonate, PFOS)和全氟壬酸(perfluorononanoate,PFNA),这表明自来水中的主要污染物为中短碳链(C≤10)的全氟化合物.另外,通过计算PFASs的危险商值(risk quotients, RQ),发现四川地区自来水中PFOA、PFOS、PFHxS、PFBS和PFHxA的风险商值均小于1,不会对当地居民带来直接的健康风险.  相似文献   
145.
本实验以玉米秸秆为原料,制备了生物炭和AlCl3改性生物炭,研究了2种生物炭分别调理污泥后的脱水效果,并探讨了污泥脱水性能的改善机理.结果表明,经过2种生物炭调理后,污泥比阻(SRF)、泥饼含水率(MC)、污泥沉降体积指数(SV30)、毛细抽吸时间(CST)均下降,污泥净产率(YN)升高,说明污泥脱水性能得到了改善,且AlCl3改性生物炭对污泥脱水性能的改善效果明显优于生物炭.当AlCl3(溶液浓度3mol/L)改性生物炭的用量为3g/L时,调理后的污泥SRF,MC,SV30,CST分别降低至1.3×1012m/kg,81.9%,78.6%,35s,YN增加至17.8kg/(m2·h).分析原因:一方面,经过生物炭调理后,泥饼中会形成一定的骨架结构,使得污泥中的水和EPS能够更容易地释放;另一方面,经过AlCl3改性后,改性生物炭携带的正电荷(Al3+)能够与污泥颗粒所带的负电荷发生电中和作用,使得污泥颗粒更容易聚集,从而提高污泥的脱水效果.  相似文献   
146.
利用MODIS气溶胶光学厚度(AOD)数据针对不同土地覆盖类型的适用性,提出了一种基于土地覆盖类型的AOD融合方法,生成了一种新的3km AOD数据集.在此基础上,通过地理加权回归(GWR)模型估算了京津冀地区2016年PM2.5浓度,并用交叉验证的方法对模型性能进行评价.结果表明:利用融合后的AOD数据建立的模型可解释PM2.594.85%的浓度变化,交叉验证R2为0.94,RMSE为9.27μg/m3,MPE为6.72μg/m3,明显优于多元线性回归(MLR)模型;基于GWR模型估算的京津冀地区2016年年均PM2.5浓度为58.57μg/m3,其中冬季PM2.5浓度最高,春秋季次之,夏季浓度最低,PM2.5月均浓度变化范围32.78~140.83μg/m3,8月份浓度最低,12月份浓度最高;空间分布南北差异显著,衡水市PM2.5污染最为严重,张家口市PM2.5浓度较低.利用此方法成功弥补了PM2.5空间缺失,为城市尺度的健康效应和环境流行病学研究提供数据支持.  相似文献   
147.
郭梅  任学昌  王建钊  康赟  孟悦 《中国环境科学》2019,39(12):5119-5125
通过简单的超声剥离分散和水热法,成功制得了具有多孔结构的TiO2/pg-C3N4复合催化剂.利用XRD、SEM、TEM、UV-Vis DRS和PL对样品的形貌、结构及光学性能进行了表征.在模拟太阳光照射下,以RhB和MO为模拟污染物考察了TiO2/pg-C3N4的光催化性能.结果表明:当TiO2占pg-C3N4的质量分数为5%时,制得的TiO2/pg-C3N4(5:100)复合催化剂具有最优的光催化性能.TiO2/pg-C3N4(5:100)对RhB的光催化降解途径为O2·-和h+使整个共轭发色团结构发生裂解.TiO2/pg-C3N4(5:100)光催化性能的提高一方面是由于多孔结构增加了光催化反应的活性位点;另一方面是由于TiO2与pg-C3N4之间形成了Z型异质结,与传统的Ⅱ型异质结相比,该复合催化剂不仅使光生载流子分离效率提高,同时保留了pg-C3N4导带电子的强还原性和TiO2价带空穴的强氧化性.  相似文献   
148.
科学地进行城镇发展空间与农业生产空间的划分,是解决城市无序发展问题和粮食安全问题的重要途径。本文以江西省临川区为例,借助ArcGIS、GeoDa等软件,对临川区耕地综合质量及其自相关关系进行评价,以此确定永久基本农田初步划定成果,采用多准则判断CA模型对城市扩张进行模拟,通过两方面结果的对比与调整,结合城市发展方向、发展模式和耕地国家利用等别,进行永久基本农田和城市开发边界的划定。结果表明:永久基本农田划定面积为593.46 km2,初步划定结果主要分布于上顿渡镇、崇岗镇、河埠乡和荣山镇等耕地综合质量较高,且多为高—高聚集的区域。经过城市扩张模拟结果可知,临川区城市建设用地面积较为显著增加,主要增加面积分布于展坪乡、上顿渡镇以及钟岭街道。城市发展方向和城市扩张模型分析结果显示,临川区城市建设用地主要向西北、东南、西南方向扩张,扩张类型主要为蔓延式扩展。根据耕地国家利用等别将初步划定永久基本农田区分为可调入区与可调出区,从而进行永久基本农田区与城市开发边界的优化与协调,形成永久基本农田区与城市开发边界的最终成果。研究结果可为保护耕地资源、避免城市的无序扩张提供参考,也可为今后的划定工作提供借鉴。  相似文献   
149.
为深入理解土壤细菌群落沿海拔梯度的分布特征,以秦岭山脉中段的朱雀国家森林公园朱雀山北坡(简称“朱雀北坡”)与太白山自然保护区太白山北坡(简称“太白山北坡”)为研究区域,海拔梯度上每隔400 m设置采样点,通过高通量测序研究土壤细菌群落的海拔变化规律及其关键影响因素.结果表明:研究区域内,随海拔升高,土壤pH趋于降低(太白山北坡不明显),w(TC)、w(TN)、w(TOC)均显著升高,w(TP)也趋于升高(朱雀北坡不明显).两个区域土壤细菌中相对丰度最高的均为变形菌门和酸杆菌门,朱雀北坡随海拔梯度变化显著的细菌主要包括变形菌门、硝化螺旋菌门、浮霉状菌门、酸杆菌门、放线菌门,其中,硝化螺旋菌门相对丰度与海拔呈正相关,放线菌门相对丰度与海拔呈负相关;太白山北坡随海拔梯度变化显著的细菌主要包括放线菌门、疣微菌门、浮霉状菌门、绿弯菌门,其中,放线菌门相对丰度与海拔呈负相关,其余三者相对丰度与海拔呈正相关.两个区域土壤细菌多样性指数(如Shannon-Wiener指数、Chao1指数、observed-species指数、PD_whole_tree指数等)沿海拔梯度均无明显变化规律,但太白山北坡数值整体上高于朱雀北坡.典范对应分析(canonical correlation analysis,CCA)结果显示,影响朱雀北坡和太白山北坡土壤细菌群落结构的主要因素均为pH和w(TOC).研究显示,不同海拔梯度也是导致秦岭中段北坡土壤细菌群落差异的重要因素.   相似文献   
150.
酸热活化对海泡石吸附水溶液中Cd的影响机制   总被引:2,自引:0,他引:2       下载免费PDF全文
为增加SP(海泡石)的比表面积并提高其对水溶液中Cd的去除效率,采用HCl对SP进行酸热活化,探索制备HHSP(酸热活化海泡石)最佳的c(HCl)、酸改性时间和热活化温度,并比较SP和HHSP对Cd的吸附动力学和等温吸附特征,通过对吸附前后的SP和HHSP进行SEM-EDS(扫描电镜)、XRD(X射线衍射)和XPS(X射线光电子能谱)分析,以阐明HHSP吸附Cd的微观反应机理.结果表明:0.9 mol/L的HCl改性24 h后,500℃下热活化1 h制备的HHSP吸附性能最佳.准二级动力学模型和Langmuir等温吸附模型均能够很好地描述SP和HHSP对Cd的吸附特征.SP和HHSP对初始质量浓度为50 mg/L的溶液中Cd的去除率在2 h内分别达73.13%和85.96%,在24 h内达到吸附平衡.HHSP的最大饱和吸附量(qmax)为22.147 mg/g,比SP(4.200 mg/g)增加了4.23倍.酸热处理降低了SP的pH和pHpzc(零电荷点),表明在SP表面吸附活性中心增多.SEM-EDS显示,酸热活化未改变SP的纤维状结构,Cd吸附量由SP的1.57%增至HHSP的2.13%.XPS分析表明,SP和HHSP对Cd的吸附作用包括了表面羟基(-OH)络合作用以及产生CdCO3、CdCl2、CdO和Cd(OH)2沉淀.XRD分析表明,酸改性通过清除SP的CaCO3成分,比表面积增加,从而增加了HHSP对Cd的吸附量.研究显示,酸热活化可增加HHSP对Cd的吸附效能,为利用HHSP有效控制稻田土壤Cd生物有效性提供了有益途径.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号