首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   2篇
  国内免费   4篇
安全科学   12篇
废物处理   12篇
环保管理   42篇
综合类   41篇
基础理论   50篇
污染及防治   73篇
评价与监测   13篇
社会与环境   23篇
灾害及防治   2篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   8篇
  2015年   6篇
  2014年   11篇
  2013年   37篇
  2012年   11篇
  2011年   12篇
  2010年   12篇
  2009年   6篇
  2008年   13篇
  2007年   17篇
  2006年   14篇
  2005年   12篇
  2004年   9篇
  2003年   8篇
  2002年   14篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1933年   1篇
  1931年   1篇
排序方式: 共有268条查询结果,搜索用时 125 毫秒
141.
Tropical soils are important sources and sinks of atmospheric methane (CH4) and major sources of oxides of nitrogen gases, nitrous oxide (NM2O) and NOx (NO+NO2). These gases are present in the atmosphere in trace amounts and are important to atmospheric chemistry and earth's radiative balance. Although nitric oxide (NO) does not directly contribute to the greenhouse effect by absorbing infrared radiation, it contributes to climate forcing through its role in photochemistry of hydroxyl radicals and ozone (O3) and plays a key role in air quality issues. Agricultural soils are a primary source of anthropogenic trace gas emissions, and the tropics and subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. The soil microbial processes responsible for the production and consumption of CH4 and production of N-oxides are the same in all parts of the globe, regardless of climate. Because of the ubiquitous nature of the basic enzymatic processes in the soil, the biological processes responsible for the production of NO, N2O and CH4, nitrification/denitrification and methanogenesis/methanotropy are discussed in general terms. Soil water content and nutrient availability are key controls for production, consumption and emission of these gases. Intensive studies of CH4 exchange in rice production systems made during the past decade reveal new insight. At the same time, there have been relatively few measurements of CH4, N2O or NOx fluxes in upland tropical crop production systems. There are even fewer studies in which simultaneous measurements of these gases are reported. Such measurements are necessary for determining total greenhouse gas emission budgets. While intensive agricultural systems are important global sources of N2O and CH4 recent studies are revealing that the impact of tropical land use change on trace gas emissions is not as great as first reports suggested. It is becoming apparent that although conversion of forests to grazing lands initially induces higher N-oxide emissions than observed from the primary forest, within a few years emissions of NO and N2O generally fall below those from the primary forest. On the other hand, CH4 oxidation is typically greatly reduced and grazing lands may even become net sources in situations where soil compaction from cattle traffic limits gas diffusion. Establishment of tree-based systems following slash-and-burn agriculture enhances N2O and NO emissions during and immediately following burning. These emissions soon decline to rates similar to those observed in secondary forest while CH4 consumption rates are slightly reduced. Conversion to intensive cropping systems, on the other hand, results in significant increases in N2O emissions, a loss of the CH4 sink, and a substantial increase in the global warming potential compared to the forest and tree-based systems. The increasing intensification of crop production in the tropics, in which N fertilization must increase for many crops to sustain production, will most certainly increase N-oxide emissions. The increase, however, may be on the same order as that expected in temperate crop production, thus smaller than some have predicted. In addition, increased attention to management of fertilizer and water may reduce trace gas emissions and simultaneously increase fertilizer use efficiency.  相似文献   
142.
A variety of bioacoustics distance metrics have been used to assess similarities in the vocalizations of different individuals. Here, we provide a detailed analysis of several acoustic similarity indices, some of which have been developed with the specific aim of characterizing the sensory coding of auditory stimuli. We compare different approaches through the analysis of begging calls of several passerine species and specialist brood parasitic cuckoos that putatively evolved to mimic their hosts. The different bioacoustics distances did not provide consistently correlated similarity patterns, implying that they are sensitive to different sound features. However, the encoded spectrogram alignment method was correlated with all other acoustic distance metrics, suggesting that this method provides a consistent approach to use when the perceptually salient sound parameters are unknown for a particular species. Our analyses confirm that statistical similarity of begging calls can be detected in a New Zealand pair of host and specialist parasite species. We also show detectable similarity in two other Australasian host–parasite pairs and another New Zealand system, but to a more limited extent. By examining phylogenetic patterns in the begging call diversity, we also confirm that specialist cuckoos have evolved to mimic the begging calls of their hosts but host species have not co-evolved to modify their calls in response to begging call similarity by the parasite. Our results illustrate that understanding the function and mechanism of behavioral copying and mimicry requires statistically consistent measures of similarity that are related to both the physical aspects of the particular display and the sensory basis of its perception.  相似文献   
143.
We present three studies providing an increased understanding of the interdependence between perceived organizational support (POS) and leader–member exchange (LMX). Using employees from a social service agency and new hires from a variety of organizations, we report evidence for a relational chain leading from supervisors' perceptions of support by the organization (supervisor POS) to the formation of high‐quality LMX relationships with their subordinates (first link), who interpret high‐quality LMX as support from the organization (subordinate POS, second link) and, ultimately, repay the organization with increased dedication and effort (examined here in terms of reduced withdrawal behavior). The relationship between supervisor POS and LMX with subordinates was strongly moderated by supervisor fear of exploitation in exchange relationships (reciprocation wariness), holding only for supervisors with low reciprocation wariness. Consistent with the view that employees perceive the organization as partly responsible for treatment received from supervisors, LMX was found to be more strongly related to POS when employees highly identified their supervisors with the organization (supervisor's organizational embodiment), and this interaction extended to reduced withdrawal behavior. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
144.
Climatic changes over the long term will modify significantly the biosphere, with glaciation events probably taking place in the next 100 000 years. This is important to safety assessments of nuclear waste disposal facilities that contain high-level and long-lived waste.The soils will evolve toward new situations, and their properties will be consequently modified (e.g. an increase of soil organic matter may be expected in a cooler climate). These changes in soil properties would affect the mobility and the soil-to-plant transfer of radionuclides such as (99)Tc. This study aimed at simulating the cooling of climatic conditions for soils representative of a Jurassic limestone plateau, and the effect on transfer parameters of (99)TcO(4)(-) in the soil-plant systems was investigated. The cooler conditions were simulated by increasing elevation, a surrogate for climate change. Soils were sampled in similar geological background and topography at different elevations in the north east of France (Lorraine and Jura). Soil/solution distribution coefficients (K(d)) of (99)TcO(4)(-) were measured on soil samples in short-term batch experiments with 1:10 soil:solution ratio. Rye grass was grown on the soils spiked with (99)TcO(4)(-) at temperature regimes adapted to each soil. Also, two different temperature regimes (cold and temperate) were applied to one soil to test the effect of plant physiology and evapotranspiration on (99)TcO(4)(-) uptake. K(d) values did not show significant differences among soils in aerobic conditions, and were not significantly different from 0. During plant culture, reduction of (99)Tc was never totally achieved in soils, including in a peaty OM soil. Concentration ratios (CR) were calculated on a dry weight basis and ranged from 20 to 370. CR were always higher in high temperature regimes than in cold temperatures. They were also inversely correlated with soil organic matter (OM) content. A decrease of CR values from 5 to 10-fold was observed with increasing soil OM. Results suggested that the water holding capacity, in which (99)Tc is diluted, the nitrification potential of the soils and the evapotranspiration of plants (efficiency of uptake of soluble (99)TcO(4)(-)) were strongly involved in these differences.  相似文献   
145.
Previous studies have shown in noncalcareous soils that acid deposition may have increased soil leaching of basic cations above the input rate from soil weathering and atmospheric depositions. This phenomenon may have increased soil acidity levels, and, as a consequence, may have reduced the availability of these essential nutrients for forest growth. Fourteen plots of the Forest Ecosystem Research and Monitoring Network in Québec were used to examine the relation between post-industrial growth trends of sugar maple (Acer saccharum Marsh.) and acid deposition (N and S), stand decline rate, and soil exchangeable nutrient concentrations. Atmospheric N and S deposition and soil exchangeable acidity were positively associated with stand decline rate, and negatively with the average tree basal area increment trend. The growth rate reduction reached on average 17% in declining stands compared with healthy ones. The results showed a significant sugar maple growth rate reduction since 1960 on acid soils. The appearance of the forest decline phenomenon in Québec can be attributed, at least partially, to soil acidification and acid deposition levels.  相似文献   
146.
Directionally drilled horizontal wells offer the opportunity for significant cost savings and technical advantages over alternative trenched well and vertical well soil and groundwater remediation systems in many cases. The magnitude of the cost savings is a function of the remediation technology deployed and the values placed on the reduction of site impacts, dramatic reduction in the time required to achieve site remediation goals and requirements, the ability of horizontal well remediation to easily treat normally recalcitrant contaminants such as MTBE, and the ability to drill under paved areas, operating plants, residential areas, landfills, lagoons, waterways, ponds, basins, and other areas that are normally difficult or impossible to access with conventional drilling or trenching methods. In addition to improvements in site access capabilities, horizontal wells have been found capable of addressing contaminants that vertical wells do not readily treat, even with the same remediation technology deployed, especially if air‐based remediation technologies are deployed. With biosparging, for example, greater treatment capabilities of horizontal wells over vertical wells are attributed to greater oxygen flux over a broader area, a larger treatment zone, and extremely prolonged residence of groundwater contaminants in the aerobic treatment area, typically months or years. This article describes the use of directionally drilled horizontal wells for application of a variety of treatment technologies and includes costs of various options with a detailed comparison of biosparging options. © 2002 Wiley Periodicals, Inc.  相似文献   
147.
The paper starts from an assessment of regional policy inspired by considerations of social justice. An effort is made to sketch the outline of a top‐down and bottom‐up approach and provide a new profile for regional planning, and for professional planners within the context of contemporary politico‐economic transformations. The planner, from having been a pure technician who does not question the nature of problems faced, must become actively engaged in, and committed to the problems and conflicts of the area, and to the specific proposals put forward.  相似文献   
148.
The cycling of base cations (K, Ca, Mg, and Na) was investigated in a boreal balsam fir forest (the Lake Laflamme Watershed) between 1999 and 2005. Base cation budgets were calculated for the soil rooting zone that included atmospheric deposition and soil leaching losses, two scenarios of tree uptake (whole-tree and stem-only harvesting), and three scenarios of mineral weathering, leading to six different scenarios. In every scenario there was a net accumulation of Mg within the soil exchangeable reservoir, while Ca accumulated in four scenarios. Potassium was lost in five of the six scenarios. Contrary to Ca and Mg, immobilization of K within tree biomass (69 mol x ha(-1) x yr(-1)) was the main pathway of K losses from the soil exchangeable reservoir, being five times higher than losses via soil leaching (14 mol x ha(-1) x yr(-1)). The amounts of K contained within the aboveground biomass and the exchangeable soil reservoir were 3.3 kmol/ha and 4.2 kmol/ha, respectively. Whole-tree harvesting may thus remove 44% of the K that is readily available for cycling in the short term, making this forest sensitive to commercial forestry operations. Similar values of annual K uptake as well as a similar distribution of K between tree biomass and soil exchangeable reservoirs at 14 other coniferous sites, distributed throughout the boreal forest of Quebec, suggest that the Lake Laflamme Watershed results can be extrapolated to a much larger area. Stem-only harvesting, which would reduce K exports due to biomass removal by 60%, should be used for these types of forest.  相似文献   
149.
Santiago LS 《Ecology》2007,88(5):1126-1131
I investigated the relationship between leaf physiological traits and decomposition of leaf litter for 35 plant species of contrasting growth forms from a lowland tropical forest in Panama to determine whether leaf traits could be used to predict decomposition. Decomposition rate (k) was correlated with specific leaf area (SLA), leaf nitrogen (N), phosphorus (P), and potassium (K) across all species. Photosynthetic rate per unit mass (Amass) was not correlated with k, but structural equation modeling showed support for a causal model with significant indirect effects of Amass on k through SLA, N, and P, but not K. The results indicate that the decomposability of leaf tissue in this tropical forest is related to a global spectrum of leaf economics that varies from thin, easily decomposable leaves with high nutrient concentrations and high photosynthetic rates to thick, relatively recalcitrant leaves with greater physical toughness and defenses and low photosynthetic rates. If this pattern is robust across biomes, then selection for suites of traits that maximize photosynthetic carbon gain over the lifetime of the leaf may be used to predict the effects of plant species on leaf litter decomposition, thus placing the ecosystem process of decomposition in an evolutionary context.  相似文献   
150.
Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files. We present differences in mass spectral peak ratios for bare TiO(2) NPs compared to NPs mixed separately with natural organic matter (NOM) or pond water. The results suggest that subtle changes in the local environment can alter the surface chemistry of TiO(2) NPs, as monitored by Ti(+)/TiO(+) and Ti(+)/C(3)H(5)(+) peak ratios. The subtle changes in the absolute surface chemistry of NP aggregates vs. that of the subsurface are explored. It is envisioned that the methods developed herein can be adapted for monitoring the surface chemistries of a variety of engineered NPs obtained from diverse natural environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号