The contamination of surface and ground water by bentazone has attracted increasing global concern in recent years. We conducted
a detailed investigation using MIEX resin to eliminate bentazone from waters. Batch experiments were carried out to evaluate the e ect
of process parameters, such as retention time, resin amount, and initial pesticide concentration, on removal e ciency of bentazone.
Results showed the sorption process was fast and bentazone could be e ciently removed in 30 minutes. The kinetic process of
bentazone sorption on MIEX resin was well described by pseudo second-order model and intraparticle di usion was the rate controlling
step. The MIEX resin possessed the highest sorption capacity of 0.2656 mmol/mL for bentazone according to Langmuir fitting.
Bentazone is a hydrophobic ionizable organic compound, and both ionic charge and hydrophobic aromatic structure governed the
sorption characteristics on MIEX resin. The di erent removal e ciencies of ionic and non-ionic pesticides, combined with the charge
balance equations of bentazone, SO4
2??, NO3?? and Cl??, indicated that removal of bentazone using MIEX resin occurred primarily via
ion exchange. 相似文献
Cadmium (Cd) is a highly toxic element in water. Its toxicity has been attributed to oxidative stress mediated by free radicals. Here we investigated the effects of Cd on the histopathology, antioxidant enzymes and lipid peroxidation of crustacean heart. The freshwater crabs Sinopotamon yangtsekiense were exposed to different concentrations of Cd for 1, 3, 5 and 7 d. After exposure, histological abnormalities were discovered, including myocardial edema, vacuolar and vitreous degeneration, and infiltration of inflammatory cells. Additionally, alterations in nuclei, mitochondria, rough endoplasmic reticulum as well as myofibrils were observed. Meanwhile, superoxide dismutase (SOD) activity was significantly increased after Cd exposure. Catalase (CAT) activity was only increased in the group exposed to 14.50 mg L−1 Cd on day 5 and decreased with increasing Cd concentration and exposure time. Glutathione peroxidase (GPx) activity was increased in groups treated with 29.00, 58.00 and 116.00 mg L−1 on days 1 and 3, and decreased thereafter. Besides, malondialdehyde (MDA) levels were significantly increased after 3 d of Cd exposure at all the indicated concentrations. These results showed that acute Cd exposure led to harmful effects on the histology of crab heart, which are most likely linked to Cd-induced oxidative stress. 相似文献
Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R2) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg−1 soil, pH 4.5), and rhamnolipid (pH 6.5).