首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1447篇
  免费   51篇
  国内免费   451篇
安全科学   106篇
废物处理   90篇
环保管理   105篇
综合类   704篇
基础理论   281篇
污染及防治   517篇
评价与监测   48篇
社会与环境   39篇
灾害及防治   59篇
  2023年   20篇
  2022年   73篇
  2021年   60篇
  2020年   34篇
  2019年   36篇
  2018年   60篇
  2017年   50篇
  2016年   62篇
  2015年   70篇
  2014年   115篇
  2013年   135篇
  2012年   107篇
  2011年   109篇
  2010年   99篇
  2009年   104篇
  2008年   104篇
  2007年   66篇
  2006年   74篇
  2005年   47篇
  2004年   57篇
  2003年   65篇
  2002年   44篇
  2001年   38篇
  2000年   41篇
  1999年   31篇
  1998年   60篇
  1997年   41篇
  1996年   24篇
  1995年   25篇
  1994年   25篇
  1993年   26篇
  1992年   18篇
  1991年   13篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1984年   2篇
排序方式: 共有1949条查询结果,搜索用时 265 毫秒
481.
硝酸盐电子受体反硝化同时除磷试验分析   总被引:5,自引:0,他引:5  
经研究发现AAA SBR系统中的活性污泥可以利用硝酸盐作为电子受体进行缺氧吸磷并同时发生反硝化脱氮。试验利用“双泥”系统进一步探讨了污水生物反硝化同时除磷的可能性,结果表明 :“双泥”系统的“双重”吸磷以及内碳源反硝化除磷方式可以使生物处理出水磷酸盐浓度趋近于零,TP≤ 0 2 3mg L、NH3 N≤ 0 5mg L、TN≤ 8mg L、CODCr≤2 5mg L。  相似文献   
482.

Heavy metal(loid) extraction from soils in overlapped areas of farmland and coal resources (OAFCR) is crucial in understanding heavy metal bioavailability in soil and the subsequent risks to crops and consumers. However, limited attention has been paid to the extraction procedure of heavy metal(loid)s in OAFCR soils in the research. This study therefore explored different single and mixed extraction procedures, such as acetic acid (HOAc), citric acid, ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA), ethylene diamine tetraacetic acid + ammonium acetate (EDTA+NH4OAc), and total digestion (HNO3-HClO4-HF) to determine the bioavailability of As, Cd, Cr, Cu, Pb, and Zn in OAFCR soil in Xuzhou, China. The results showed the metal(loid) extraction capacity from soil of the different procedures could be ranked as AB-DTPA > EDTA+NH4OAc > HOAC > citric acid. The transfer ability of heavy metal(loid)s from soil to wheat tissues and from wheat roots to aerial parts was analyzed by calculating the bioconcentration factor and transfer factor, respectively. Transfer factors of all metal(loid)s were < 1 except Cr whose transfer factor from root to shell and straw were > 1. It is suspected that foliar uptake plays a dominant role in Cr uptake. Correlation analysis between the bioavailability of heavy metal(loid)s in soil and uptake in respective wheat tissues was performed to recommend the best extraction procedures for different studies. The results show that AB-DTPA extraction is recommended for Cu uptake to wheat roots, straws, shells and grains, Zn uptake to roots, and Cd uptake to roots and straws.

  相似文献   
483.
The anaerobic co-digestion of biomass waste, a promising process of reusing resources, is capable of improving methane production. However, the characteristics and composition of fermenting raw material negatively influence the efficiency of methane production. Optimization experiments were systematically performed in this study through anaerobic co-digestion with urea-ammoniated rice straw (UARS) and food waste (FW) as co-substrates. Anaerobic co-digestion of UARS and FW in biogas production under mesophilic conditions (35 °C) was investigated in a 1 L enclosed triangular flask with a total organic load of 6 g volatile solids (VS)/L. The optimal mixing ratio of UARS to FW was close to 1:3, and the methane yield increasing by 8.83% compared with the sole substrate. Furthermore, based on the optimization ratio, supplementation of cobalt (Co) and nickel (Ni) on co-digestion were significantly superior to that of a single element. Additionally, kinetic analysis indicated that trace element remarkably facilitated the reaction rate of co-digestion. Noteworthy, the addition of Co, Ni, and the combination of Co and Ni achieved very significant (p < 0.01) improvement of 6.45, 8.36, and 13.65%. Meanwhile, Ni was substantially promoted the removal rate of VS, enhanced the operational stability of co-digestion and increased the methane content significantly.  相似文献   
484.
In this reported study, a renewable and eco-friendly blood meal-based (BM) bio-adhesive was developed for the plywood fabrication. Polyvinyl alcohol (PVA), sodium dodecyl sulphate (SDS), and triglycidylamine (TGA) were respectively employed as emulsifier, denaturant and crosslinking agent to modify the BM adhesive. Three-ply plywood was manufactured and its wet shear strength was tested. The solid content, residual rate, functional groups, thermal degradation behavior, and cross section micromorphology of the resulting adhesives were characterized in detail. The experimental results showed that PVA prevented the BM agglomeration, SDS unfolded the structure of protein and then TGA reacted with the exposed active groups in the BM protein molecules, forming a cross-linked structure. As a result, the thermal stability of the modified BM adhesive was improved and the cross section of the cured adhesive was more homogeneous, which enhanced the performance of the adhesive. Consequently, the wet shear strength of the plywood bonded by modified BM adhesive markedly increased by 388% to 1.27 MPa. Compared with soy bean meal-based adhesive, a higher protein content and hydrophobic amino acids content of BM are benefit for fabricating high performance bio-based adhesive, which rendered the BM adhesive practical for plywood industrial application.  相似文献   
485.

This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

  相似文献   
486.
天然气净化厂放空废气对环境的影响及控制措施   总被引:2,自引:0,他引:2  
天然气净化厂除正常生产有工艺废气排放外,传统装置检修开停产过程、供电或设备异常情况下,会有大量酸气、原料气通过放空火炬燃烧后排放。文章主要分析了天然气净化装置放空废气排放情况及其对周边环境的影响,阐述了异常放空、检修开停产过程原料气和酸气放空的控制措施及其环境效益。  相似文献   
487.
在开展建设项目自主验收过程中,发现建设项目存在产能设计、环保设施风量不合理及建设内容存在重大变动等问题。针对存在问题提出一些折中解决方案,以期能够给验收工作继续开展提供解决思路,同时期望从业者能够识别焦点问题,能够全过程规范环评设计、审批及竣工环保验收工作。  相似文献   
488.
In glacierized catchments, elevation is correlated with meltwater through its association with temperature, precipitation, and glacier hypsometry. The revelation of the altitudinal distribution of meltwater, unattended and not fully understood in previous work, might provide a better understanding of climate change impacts on glacio‐hydrology. Here, critical zone approach was defined and applied in 12 glacierized catchments of the Tien Shan–Pamir–Karakorum Mountains, Central Asia using manually calibrated glacier‐enhanced Soil and Water Assessment Tool model over 1966–2005. The critical zone, a sequence of elevation bands with above‐average snow and glacier melt, contributes maximum meltwater to total runoff. The critical zone shared 37%–95% (average = 80%) of meltwater contributions to total runoff, although its size was only 13%–30% of the total elevational relief. The critical zone controlled 76% and 82% variability in relative changes of glacier area and total runoff at the catchment scale, respectively. The increase in temperature was identified as the dominant driver for variations in total runoff in all catchments except Vakhsh and Yurungkash, where precipitation change remained dominant. Overall, glacier hypsometry limited the first‐order control of meltwater distributions on glacio‐hydrology. It is concluded that critical zone approach can interpret the proxy role of elevation to affect water availability under climate and glacier area change in glacierized catchments.  相似文献   
489.
• Simply doping sands with ZVI achieved an even activation of ZVI by oxidants. • Sand doping facilitated proportional As trapping along the ZVI/oxidants column. • ZVI/sand/oxidants are highly efficient for arsenic removal. • ZVI/sand/oxidants reduced significantly the Fe2+ leaching and effluent turbidity. • More than 54% of arsenic was reduced to As(III) in ZVI/sand/oxidants system. The coupling of zero-valent iron (ZVI) with common oxidants has recently achieved very rapid and highly efficient removal of Heavy metals from wastewater. However, the uniform activation of ZVI throughout the column and the proportional removal of target contaminants are urgently required for the prevention of premature filter clogging and the extension of the effective column operational time. In this study, we successfully achieved this objective by simply doping granular sand with ZVI at appropriate weight ratios. When pure ZVI packed column was spiked with oxidants, the majority of As trapping occurred between the column inlet and the first sampling point. In a packed column with a 1:20 mixture of ZVI and sand, the average As removal efficiency was 36 (1st), 13.1 (2nd), 18.5 (3rd), 19.2 (4th) and 5.9% (5th outlet). The overall arsenic removal performance of the composite filling system of ZVI/sand was equally as efficient as that of the previous pure ZVI-packed system. Moreover, the leaching of Fe was significantly reduced with an increased sand ratio, resulting in clearer water with less turbidity. The results of X-ray photoelectron spectroscopy (XPS) demonstrated that more than 54% of the arsenic was reduced to As(III). X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the extensive corrosion of the ZVI surface, which resulted in various species of iron oxyhydroxides responsible for the highly efficient sequester of arsenic through reduction, adsorption, and coprecipitation.  相似文献   
490.
• DPAA sorption data was found to fit the Freundlich equation. Kf was significantly positive correlated with oxalate-extractable Fe2O3. • Ligand exchange was the main mechanism for DPAA sorption on soils. • Bidentate binuclear and monodentate mononuclear DPAA bonds were identified. Diphenylarsinic acid (DPAA) is a phenyl arsenic compound derived from chemical warfare weapons. Macroscopic and microscopic work on DPAA sorption will provide useful information in predicting the partitioning and mobility of DPAA in the soil-water environment. Here, batch experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy were used to investigate the sorption mechanisms of DPAA. The DPAA sorption data from 11 soil types was found to fit the Freundlich equation, and the sorption capacity, Kf, was significantly and positively correlated with oxalate-extractable Fe2O3. The Kf values of eight of the 11 untreated soils (1.51–113.04) significantly decreased upon removal of amorphous metal (hydr)oxides (0.51–13.37). When both amorphous and crystalline metal (hydr)oxides were removed from the untreated soils, the Kf values either decreased or slightly increased (0.65–3.09). Subsequent removal of soil organic matter from these amorphous and crystalline metal (hydr)oxide-depleted samples led to further decreases in Kf to 0.02–1.38, with only one exception (Sulfic Aquic-Orthic Halosols). These findings strongly suggest that ligand exchange reactions with amorphous metal (hydr)oxides contribute most to DPAA sorption on soils. EXAFS data provide further evidence that DPAA primarily formed bidentate binuclear (2C) and monodentate mononuclear (1V) coring-sharing complexes with As-Fe distances of 3.34 and 3.66 Å, respectively, on Fe (hydr)oxides. Comparison of these results with earlier studies suggests that 2C and 1V complexes of DPAA may be favored under low and high surface coverages, respectively, with the formation of 1V bonds possibly conserving the sorption sites or decreasing the steric hindrance derived from phenyl substituents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号