首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   1篇
  国内免费   3篇
安全科学   10篇
废物处理   11篇
环保管理   8篇
综合类   43篇
基础理论   31篇
环境理论   2篇
污染及防治   95篇
评价与监测   27篇
社会与环境   4篇
灾害及防治   2篇
  2024年   1篇
  2023年   7篇
  2022年   4篇
  2021年   13篇
  2020年   9篇
  2019年   9篇
  2018年   11篇
  2017年   13篇
  2016年   15篇
  2015年   4篇
  2014年   12篇
  2013年   18篇
  2012年   10篇
  2011年   14篇
  2010年   10篇
  2009年   12篇
  2008年   9篇
  2007年   13篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   2篇
  1985年   1篇
  1965年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有233条查询结果,搜索用时 31 毫秒
221.
222.
223.
224.
225.
226.
To examine bioconcentration factors (BCFs) of mercury by Parasol Mushroom (Macrolepiota procera) roughly similarly sized (a cap diameter) fruiting bodies of this fungus and underlying soil (0–10 cm) samples were collected at 15 sites in Poland between 1995 and 2003. The total mercury content of the individual caps and stipes of Parasol Mushroom ranged from 0.05 to 22 mg Hg/kg dry matter (d.m.) and from 0.05 to 20 mg Hg/kg d.m., while the means were from 1.1 to 8.4 mg Hg/kg d.m. and from 0.83 to 6.8 mg Hg/kg d.m., respectively. The caps generally contained higher concentrations of mercury when compared to stipes, and the means of the cap to stipe mercury concentration quotient ranged from 1.3 to 4.6. The range of mercury concentration in topsoil samples collected at the sites where the fruiting bodies were collected was from 0.01 to 0.54 mg/g d.m. (means ranged from 0.022 to 0.36 mg/g d.m.). The BCFs factors for total mercury varied from 0.52 to 470 for individual caps and 0.52 to 360 for stipes, while average values, depending on the site, were from 16 to 220 and from 7.6 to 130 for caps and stipes, respectively.  相似文献   
227.
Urban expansion in areas of active and legacy mining imposes a sustainability challenge, especially in arid environments where cities compete for resources with agriculture and industry. The city of Copiapó, with 150,000 inhabitants in the Atacama Desert, reflects this challenge. More than 30 abandoned tailings from legacy mining are scattered throughout its urban and peri-urban area, which include an active copper smelter. Despite the public concern generated by the mining-related pollution, no geochemical information is currently available for Copiapó, particularly for metal concentration in environmental solid phases. A geochemical screening of soils (n = 42), street dusts (n = 71) and tailings (n = 68) was conducted in November 2014 and April 2015. Organic matter, pH and elemental composition measurements were taken. Notably, copper in soils (60–2120 mg/kg) and street dusts (110–10,200 mg/kg) consistently exceeded international guidelines for residential and industrial use, while a lower proportion of samples exceeded international guidelines for arsenic, zinc and lead. Metal enrichment occurred in residential, industrial and agricultural areas near tailings and the copper smelter. This first screening of metal contamination sets the basis for future risk assessments toward defining knowledge-based policies and urban planning. Challenges include developing: (1) adequate intervention guideline values; (2) appropriate geochemical background levels for key metals; (3) urban planning that considers contaminated areas; (4) cost-effective control strategies for abandoned tailings in water-scarce areas; and (5) scenarios and technologies for tailings reprocessing. Assessing urban geochemical risks is a critical endeavor for areas where extreme events triggered by climate change are likely, as the mud flooding that impacted Copiapó in late March 2015.  相似文献   
228.
The aim of this study was to detect vegetation change and to examine trophic interactions in a Sphagnum-dominated mire in response to raised temperature and nitrogen (N) addition. A long-term global-change experiment was established in 1995, with monthly additions of N (30 kg x ha(-1) x yr(-1)) and sulfur (20 kg x ha(-1) x yr(-1)) during the vegetation period. Mean air temperature was raised by 3.6 degrees C with warming chambers. Vegetation responses were negligible for all treatments for the first four years, and no sulfur effect was seen during the course of the experiment. However, after eight years of continuous treatments, the closed Sphagnum carpet was drastically reduced from 100% in 1995 down to 41%, averaged over all N-treated plots. Over the same period, total vascular plant cover (of the graminoid Eriophorum vaginatum and the two dwarf-shrubs Andromeda polifolia and Vaccinium oxycoccos) increased from 24% to an average of 70% in the N plots. Nitrogen addition caused leaf N concentrations to rise in the two dwarf-shrubs, while for E. vaginatum, leaf N remained unchanged, indicating that the graminoid to a larger extent than the dwarf-shrubs allocated supplemented N to growth. Concurrent with foliar N accumulation of the two dwarf-shrubs, we observed increased disease incidences caused by parasitic fungi, with three species out of 16 showing a significant increase. Warming caused a significant decrease in occurrence of three parasitic fungal species. In general, decreased disease incidences were found in temperature treatments for A. polifolia and in plots without N addition for V. oxycoccos. The study demonstrates that both bryophytes and vascular plants at boreal mires, only receiving background levels of nitrogen of about 2 kg x ha(-1) x yr(-1), exhibit a time lag of more than five years in response to nitrogen and temperature rise, emphasizing the need for long-term experiments. Moreover, it shows that trophic interactions are likely to differ markedly in response to climate change and increased N deposition, and that these interactions might play an important role in controlling the change in mire vegetation composition, with implications for both carbon sequestration and methane emission.  相似文献   
229.
Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officinalis during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44–56 mm), cuttlebones of CO2-incubated individuals accreted 22–55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2-exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 μm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 μm. Interestingly, the incorporation of non-acid-soluble organic matrix (chitin) in the cuttlebones of CO2-exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officinalis, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 ] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officinalis is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号