全文获取类型
收费全文 | 108篇 |
免费 | 0篇 |
国内免费 | 3篇 |
专业分类
安全科学 | 6篇 |
废物处理 | 16篇 |
环保管理 | 1篇 |
综合类 | 36篇 |
基础理论 | 13篇 |
污染及防治 | 31篇 |
评价与监测 | 2篇 |
社会与环境 | 6篇 |
出版年
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 3篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 1篇 |
2014年 | 6篇 |
2013年 | 6篇 |
2012年 | 14篇 |
2011年 | 5篇 |
2010年 | 3篇 |
2009年 | 4篇 |
2008年 | 6篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 8篇 |
2004年 | 3篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1963年 | 1篇 |
1959年 | 1篇 |
1954年 | 1篇 |
排序方式: 共有111条查询结果,搜索用时 15 毫秒
111.
Objective: Though autonomous emergency braking (AEB) systems for car-to-cyclist collisions have been under development, an estimate of the benefit of AEB systems based on an analysis of accident data is needed for further enhancing their development. Compared to the data available from in-depth accident data files, data provided by drive recorders can be used to reconstruct car-to-cyclist collisions with greater accuracy because the position of cyclists can be observed from the videos. In this study, using data from drive recorders, the performance and limitations of AEB systems were investigated.Method: Data of drive recorders involving taxi-to-cyclist collisions were collected. Using the images collected from the drive recorders of those taxis, 40 cases of 90° car-to-cyclist intersection collisions were reconstructed using PC-Crash. Then, the collisions were reconstructed again utilizing car models with AEB systems installed while changing the sensor’s field of view (FOV) and the delay time of initiating vehicle deceleration.Results: The angle of FOV has a significant influence on avoiding car-to-cyclist collisions. Using a 50° FOV with a braking delay time of 0.5?s resulted in avoiding 6 collisions, and using a 90° FOV resulted in avoiding an additional 14 collisions. Even when installing an ideal AEB system providing 360° FOV and no delay time for braking, 8 collisions were not avoided, though the impact velocities were reduced for all of these remaining collisions. These collisions were caused by the cyclists’ sudden appearance in front of cars, and the time-to-collision (TTC) when the cyclists appeared was less than 0.9?s.Conclusion: The AEB systems were effective for mitigating collisions that occurred due to driver perception delay. Because cyclists have a traveling velocity, a wide-angle FOV is effective for reduction of car-to-cyclist intersection collisions. The reduction of delay time in braking can reduce the number of collisions that are close to the braking performance limit. The collisions that remained even with an ideal AEB system in the PC-Crash simulation indicate that such collisions could still occur for autonomous cars if the traffic environment does not change. 相似文献