首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   9篇
  国内免费   4篇
安全科学   7篇
废物处理   27篇
环保管理   63篇
综合类   58篇
基础理论   107篇
环境理论   2篇
污染及防治   156篇
评价与监测   41篇
社会与环境   30篇
灾害及防治   4篇
  2023年   4篇
  2022年   11篇
  2021年   14篇
  2020年   5篇
  2019年   18篇
  2018年   25篇
  2017年   13篇
  2016年   17篇
  2015年   15篇
  2014年   20篇
  2013年   47篇
  2012年   31篇
  2011年   47篇
  2010年   22篇
  2009年   31篇
  2008年   30篇
  2007年   24篇
  2006年   14篇
  2005年   19篇
  2004年   11篇
  2003年   17篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1969年   1篇
排序方式: 共有495条查询结果,搜索用时 15 毫秒
91.
This study has investigated numerically the influence of particle location on the number of charges per charged particle in the 10–40 nm size range at the outlet of a needle charger by simulating flow field, electric field, particle charging, and particle trajectory at various conditions. The results show that the total (i.e., diffusion + field charging) number of charges per particle increase with decreasing ratio values of radial location at the outlet of the charger due to the particle position close to the needle tip. It has also been shown that in the outlet region of the charger there is a critical radial location at which the number of charges per particle is a maximum; this critical radial location represents the point at which the charged particle trajectory becomes closest to the needle electrode. The maximum value of number of charges increases with increasing Reynolds number and slightly increases with decreasing applied voltage for particle diameter larger than 20 nm. The maximum number of charges per charged nanoparticle increases with increasing particle diameter. In addition, the minimum ratio value of radial particle location decreases with increasing Reynolds number for various particle diameters.

Implications: In this work, the influence of particle location on the number of charges per charged nanoparticle at the outlet of a needle charger has been investigated using numerical models under different conditions. The results demonstrate that the radial location affects the number of charges per particle at the outlet of the charger. The maximum number of charges increases with increasing particle diameter, and the minimum ratio value of radial particle location decreases with increasing Reynolds number. The numerical models explain and quantify the number of charges on the charged particle in the 10–40 nm size range from the outlet of the needle charger at various conditions.  相似文献   
92.
Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of emissions of nitrogen and sulfate species along the Front Range of the Colorado Rocky Mountains, as well as sources farther east and west. The nitrogen compounds include both oxidized and reduced nitrogen. A year-long monitoring program of various oxidized and reduced nitrogen species was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically, the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases (precipitation and clouds) along the east and west sides of the Continental Divide; identify the relative contributions to atmospheric nitrogen species in RMNP from within and outside of the state of Colorado; identify the relative contributions to atmospheric nitrogen species in RMNP from emission sources along the Colorado Front Range versus other areas within Colorado; and identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. Measured ammonia concentrations are combined with modeled releases of conservative tracers from ammonia source regions around the United States to apportion ammonia to its respective sources, using receptor modeling tools.

Implications: Increased deposition of nitrogen in RMNP has been demonstrated to contribute to a number of important ecosystem changes. The rate of deposition of nitrogen compounds in RMNP has crossed a crucial threshold called the “critical load.” This means that changes are occurring to park ecosystems and that these changes may soon reach a point where they are difficult or impossible to reverse. Several key issues need attention to develop an effective strategy for protecting park resources from adverse impacts of elevated nitrogen deposition. These include determining the importance of previously unquantified nitrogen inputs within the park and identification of important nitrogen sources and transport pathways.  相似文献   
93.
Although trace concentrations of ibuprofen (IBP) have been detected in diverse water bodies, there is currently insufficient information on the potentially deleterious effects of this xenobiotic. The present study aimed to determine whether IBP induces oxidative stress in brain, liver, gill, and blood of the common carp Cyprinus carpio. To this end, the median lethal concentration at 96 h (96-h LC50) was determined and the lowest observed adverse effect level was established. Carp were exposed to the latter concentration (17.6 mg L?1) for 12, 24, 48, 72, and 96 h, and the following biomarkers were evaluated: lipid peroxidation (LPX) and activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Results indicated that LPX and antioxidant enzymes’ activity increased significantly (p?<?0.05) with respect to the control group in liver, gill, and blood, while no significant differences occurred in brain. In conclusion, IBP induced oxidative stress on C. carpio, the liver being the organ most affected by this damage.  相似文献   
94.
Environmental Science and Pollution Research - Banana is one of the most important agricultural products of Ecuador. It relies on intensive monoculture cropping systems with a large volume of...  相似文献   
95.
A coupled solar photo-Fenton (chemical) and biological treatment has been used to remove biorecalcitrant diuron (42 mg l(-1)) and linuron (75 mg l(-1)) herbicides from water at pilot plant scale. The chemical process has been carried out in a 82 l solar pilot plant made up by four compound parabolic collector units, and it was followed by a biological treatment performed in a 40 l sequencing batch reactor. Two Fe(II) doses (2 and 5 mg l(-1)) and sequential additions of H2O2 (20 mg l(-1)) have been used to chemically degrade the initially polluted effluent. Next, biodegradability at different oxidation states has been assessed by means of BOD/COD ratio. A reagent dose of Fe=5 mg l(-1) and H2O2=100 mg l(-1) has been required to obtain a biodegradable effluent after 100 min of irradiation time. Finally, the organic content of the photo-treated solution has been completely assimilated by a biomass consortium in the sequencing batch reactor using a total suspended solids concentration of 0.2 g l(-1) and a hydraulic retention time of 24h. Comparison between the data obtained at pilot plant scale (specially the one corresponding to the chemical step) and previously published data from a similar system performing at laboratory scale, has been carried out.  相似文献   
96.
In this work, it has been studied the use of conductive-diamond electrochemical oxidation (CDEO) as a refining technology to assure the quality of the effluents of door manufacturing processes (DMP). To do this, the raw effluents of these factories have been treated by a combination of physicochemical, biological and CDEO treatments. CDEO was found to be a feasible alternative to the refinement of a wooden DMP waste. It can successfully decrease the organic load of the effluents of the biological oxidation with low energy requirements. In addition, in case of incidents in the biological process, CDEO can treat successfully the effluents of the coagulation process. The effluents of the biological treatment have also been treated by CDEO in order to check the possible use of electrochemical technology to increase the biodegradability of the effluents and their possible recycle to the biological treatment. Unfortunately, electrochemical technology was found to be not adequate to increase the biodegradability of the effluents of a biological treatment. The hard oxidation conditions generated during CDEO do not lead to the accumulation of intermediates but to the almost direct formation of carbon dioxide. Lowering the current density or changing the electrodes can not enhance the biodegradability of the effluents of an electrochemical cell.  相似文献   
97.
In this work, 24-h PM10 samples were collected in Rio de Janeiro, Brazil, and analysed for trace elements (Cd, Ce, Cu, La, Mo, Ni, Pb, Pd, Rh, Sb and Sn). The sampling was carried out at five locations (Bonsucesso; Centro, downtown city; Copacabana; Nova Igua?u and Sumaré) with different traffic densities and anthropogenic activities. An analytical method based on the EPA method for the determination of trace elements in airborne particulate matter (PM), using ultrasonic-assisted extraction and inductively coupled plasma mass spectrometry (ICP-MS) was applied. Our results suggest that vehicular traffic is the most important source of environmental pollution at the studied sites. The presence of Mo, Pd and Rh in the analysed filters reflects an additional source of pollution caused by the erosion and deterioration of automotive catalytic converters.  相似文献   
98.
Photochemical degradation of methylparathion (O,O,-dimethyl O-4 nitrophenylphosphorothioate) in the presence of humic acid between pH 2 and 7 was monitored by differential pulse polarography. Humic acid was not electro-active under the experimental conditions used in this study. Only the pesticide and its main degradation product at pH 2 exhibited polarographic signals. Photolysis of methylparathion in acid media was sensitized by humic acid since the pesticide did not degrade in the absence of this compound. Methylparathion degradation in the presence of humic acid was observed at each of the studied pHs. The reaction was first-order with rate constant values ranging from 2 x 10(-3) to 6.3 x 10(-3) min(-1).  相似文献   
99.
This study characterized and mapped the spatial variability patterns of seven topsoil heavy metals (Cr, Ni, Pb, Cu, Zn, Hg and Cd) within the Ebro river basin (9.3 million ha) by Multivariate Factorial Kriging. The variograms and cross-variograms of heavy metal concentrations showed the presence of multiscale variation that was modeled using three variogram models with ranges of 20km (short-range), 100km (medium-range) and 225km (long-range). Our results indicate that the heavy metal concentration is influenced by bedrock composition and dynamics at all the spatial scales, while human activities have a notorious effect only at the short- and medium-range scale of variation. Sources of Cu, Pb and Zn (and secondary Cd) are associated with agricultural practices (at the short-range scale of variation), whereas Hg variation at the short- and medium-range scale of variation is related to atmospheric deposition.  相似文献   
100.

Artificial Light at Night (ALAN) is expanding worldwide, and the study of its influence remains limited mainly to documenting impacts, overlooking the variation in key characteristics of the artificial light such as its intensity. The potential dose–response of fitness-related traits to different light intensities has not been assessed in sandy beach organisms. Hence, this study explored dose-responses to ALAN by exposing the intertidal sandy beach isopod Tylos spinulosus to a range of light intensities at night: 0 (control), 20, 40, 60, 80 and 100 lx. We quantified the response of this species at the molecular (RNA:DNA ratios), physiological (absorption efficiency) and organismal (growth rate) levels. Linear and non-linear regressions were used to explore the relationship between light intensity and the isopod response. The regressions showed that increasing light intensity caused an overall?~?threefold decline in RNA:DNA ratios and a?~?threefold increase in absorption efficiency, with strong dose-dependent effects. For both response variables, non-linear regressions also identified likely thresholds at 80 lx (RNA:DNA) and 40 lx (absorption efficiency). By contrast, isopod growth rates were unrelated (unaltered) by the increase in light intensity at night. We suggest that ALAN is detrimental for the condition of the isopods, likely by reducing the activity and feeding of these nocturnal organisms, and that the isopods compensate this by absorbing nutrients more efficiently in order to maintain growth levels.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号