首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18034篇
  免费   211篇
  国内免费   153篇
安全科学   523篇
废物处理   771篇
环保管理   2391篇
综合类   2820篇
基础理论   4939篇
环境理论   6篇
污染及防治   4550篇
评价与监测   1220篇
社会与环境   1049篇
灾害及防治   129篇
  2022年   153篇
  2021年   131篇
  2020年   136篇
  2019年   137篇
  2018年   253篇
  2017年   300篇
  2016年   401篇
  2015年   340篇
  2014年   533篇
  2013年   1397篇
  2012年   595篇
  2011年   877篇
  2010年   729篇
  2009年   694篇
  2008年   809篇
  2007年   885篇
  2006年   729篇
  2005年   602篇
  2004年   605篇
  2003年   604篇
  2002年   569篇
  2001年   706篇
  2000年   511篇
  1999年   294篇
  1998年   209篇
  1997年   231篇
  1996年   240篇
  1995年   257篇
  1994年   265篇
  1993年   207篇
  1992年   215篇
  1991年   197篇
  1990年   223篇
  1989年   201篇
  1988年   165篇
  1987年   185篇
  1986年   166篇
  1985年   166篇
  1984年   161篇
  1983年   149篇
  1982年   136篇
  1981年   134篇
  1980年   125篇
  1979年   136篇
  1978年   104篇
  1977年   117篇
  1975年   95篇
  1974年   94篇
  1973年   98篇
  1972年   89篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest under growth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources.

Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using “as-planned” (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event.

Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   
992.
Black carbon (BC), an important component of the atmospheric aerosol, has climatic, environmental, and human health significance. In this study, BC was continuously measured using a two-wavelength aethalometer (370 nm and 880 nm) in Rochester, New York, from January 2007 to December 2010. The monitoring site is adjacent to two major urban highways (I-490 and I-590), where 14% to 21% of the total traffic was heavy-duty diesel vehicles. The annual average BC concentrations were 0.76 μg/m3, 0.67 μg/m3, 0.60 μg/m3, and 0.52 μg/m3 in 2007, 2008, 2009, and 2010, respectively. Positive matrix factorization (PMF) modeling was performed using PM2.5 elements, sulfate, nitrate, ammonia, elemental carbon (EC), and organic carbon (OC) data from the U.S. Environmental Protection Agency (EPA) speciation network and Delta-C (UVBC370nm – BC880nm) data. Delta-C has been previously shown to be a tracer of wood combustion factor. It was used as an input variable in source apportionment models for the first time in this study and was found to play an important role in separating traffic (especially diesel) emissions from wood combustion emissions. The result showed the annual average PM2.5 concentrations apportioned to diesel emissions in 2007, 2008, 2009, and 2010 were 1.34 μg/m3, 1.25 μg/m3, 1.13 μg/m3, and 0.97 μg/m3, respectively. The BC conditional probability function (CPF) plots show a large contribution from the highway diesel traffic to elevated BC concentrations. The measurements and modeling results suggest an impact of the U.S Environmental Protection Agency (EPA) 2007 Heavy-Duty Highway Rule on the decrease of BC and PM2.5 concentrations during the study period.

Implications: This study suggests that there was an observable impact of the U.S EPA 2007 Heavy-Duty Highway Rule on the ambient black carbon concentrations in Rochester, New York. Aethalometer Delta-C was used as an input variable in source apportionment models and it allowed the separation of traffic (especially diesel) emissions from wood combustion emissions.  相似文献   
993.
Large petrochemical flares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulf of Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employed fine horizontal resolution (200 m?×?200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares. The larger of the two flares had an olefin emission rate exceeding 1400 lb/hr. In this case, the model simulated a rate of increase in peak ozone greater than 40 ppb/hr over a 12 km?×?12 km horizontal domain without any unusual meteorological conditions. In this larger flare, formaldehyde emissions typically neglected in official inventories enhanced peak ozone by as much as 16 ppb and contributed over 10 ppb to ambient formaldehyde up to ~8 km downwind of the flare. The intense horizontal gradients in large flare plumes cannot be simulated by coarse models typically used to demonstrate ozone attainment. Moreover, even the relatively dense monitoring network in the Ship Channel may not be able to detect many transient high ozone events (THOEs) caused by industrial flare emissions in the absence of stagnant air recirculation or stalled sea breeze fronts, even though such conditions are unnecessary for the occurrence of THOEs.

Implications: Flare minimization may be an important strategy to attain the U.S. federal ozone standard in industrialized areas, and to avoid inordinate exposure to formaldehyde in neighborhoods surrounding petrochemical facilities. Moreover, air quality monitoring networks, emission inventories, and chemical transport models with higher spatial and temporal resolution and more refined speciation of HRVOCs are needed to better account for the near-source air quality impacts of large olefin flares.  相似文献   
994.
A Monte-Carlo simulation of the approach to attainment of the National Ambient Air Quality Standard for ozone has been performed for the California Bay Area Air Quality Management District. Four compliance tests together with different design values are used in the simulation. The results show that the present compliance test requiring a zero-percent chance of violation and the design value represented by the fourth highest value in three years makes both the standard and the control requirement much more stringent than generally assumed. In fact, to attain the standard on a long-term basis would require annual means and annual second-highest values that are close to those of the rural background ozone. The simulation also shows that by taking into account the fluctuation of ozone concentrations in the compliance test, such as a t test, and by using a design value consistent with the test, a standard defined in terms of the three-year mean of the annual second-highest values not only is more consistent with the currently- perceived stringency of the present standard, but may also be attainable with a more reasonable control requirement.  相似文献   
995.
The role of clouds as the primary pathway for deposition of air pollutants into ecosystems has recently acquired much attention. Moreover, the acidity of clouds is highly variable over short periods of time. Cloud water collections were made at Mt. Mitchell State Park, North Carolina, using a real-time cloud and rain acidity/ conductivity (CRAC) analyzer during May to September 1987, 1988 and 1989 in an effort to explore extremes of chemical exposure. On the average, the mountain peak was exposed to cloud episodes about 70 percent of experimental days. The lowest pH of cloud water in nearly real-time (~10 min.) samples was 2.4, while that in hourly integrated samples was 2.6. The cloud pH during short cloud events (mean pH 3.1), whjch results from the orographic lifting mechanism, was lower than that during long cloud events (mean pH 3.5), which are associated with mesoscale or synoptic atmospheric disturbances. On the average, the pH values in nonprecipitating cloud events were about 0.4 pH unit lower than those in precipitating cloud events. Sulfate, nitrate, ammonium and hydrogen ions were found to be the major constituents of cloud water, and these accounted for -90 percent of the ionic concentration. Total ionic concentrations were found to be much higher in non-precipitating clouds (670-3,010 μeq/L) than those in precipitating clouds (220-370 μeq/L). At low acidity, ionic balance is sometimes not obtained. It is suggested that organic acids may provide this balance.

The profile of cloud water ionic concentration versus time was frequently observed to show decrease at the beginning and rising toward the end during short cloud events. Before the dissipation of clouds, a decrease in cloud water pH and an increase in ionic concentration were found. At the same time, temperature and solar radiation increased, and relative humidity and microphysical parameters (liquid water content, average droplet size, and droplet concentration) decreased. These observations suggest that evaporative dissipation of cloud droplets leads to acidification of cloud water. Mean pH of cloud water was 3.4 when the prevailing wind was from the northwest direction, and it was 3.9 when the wind was from the west direction. The effects of variations in cloud liquid water content have been separated from variations in pre-cloud pollutant concentrations to determine the relationship between source intensity and cloud water concentrations.  相似文献   
996.
Recent toxicological results highlight the importance of separating exposure to indoor- and outdoor-generated particles, due to their different physicochemical and toxicological properties. In this framework, a number of studies have attempted to estimate the relative contribution of particles of indoor and outdoor origins to indoor concentrations, using either statistical analysis of indoor and outdoor concentration time-series or mass balance equations. The aim of this work is to review and compare the methodologies developed in order to determine the ambient particle infiltration factor (F INF) (i.e., the fraction of ambient particles that enter indoors and remains suspended). The different approaches are grouped into four categories according to their methodological principles: (1) steady-state assumption using the steady-state form of the mass balance equation; (2) dynamic solution of the mass balance equation using complex statistical techniques; (3) experimental studies using conditions that simplify model calculations (e.g., decreasing the number of unknowns); and (4) infiltration surrogates using a particulate matter (PM) constituent with no indoor sources to act as surrogate of indoor PM of outdoor origin. Examination of the various methodologies and results reveals that estimating infiltration parameters is still challenging. The main difficulty lies in the separate calculation of penetration efficiency (P) and deposition rate (k). The values for these two parameters that are reported in the literature vary significantly. Deposition rate presents the widest range of values, both between studies and size fractions. Penetration efficiency seems to be more accurately calculated through the application of dynamic models. Overall, estimates of the infiltration factor generated using dynamic models and infiltration surrogates show good agreement. This is a strong argument in favor of the latter methodology, which is simple and easy to apply when chemical speciation data are available.

Implications: ?Taking into account that increased health risks may be related with ambient particles, a reliable estimation of the main parameters governing ambient particle infiltration indoors may assist towards the development of appropriate regulation and control measures, targeted to specific sources/factors contributing to increased exposures. The overall study of the methodological approaches estimating particle infiltration indoors suggests that dynamic models provide a more complete and realistic picture of ambient particle infiltration indoors, whereas the use of specific PM constituents to act as surrogates of indoor particles of outdoor origin seems also a promising new methodology.  相似文献   
997.
Greenhouse gas (GHG) emissions from concentrated animal feeding operations vary by stage of production and management practices. The objective of this research was to study the effect of two dietary crude protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding. Manure characteristics and GHG emissions were measured from feedlot pen surfaces. Sixteen equal-sized feedlot pens (19?×?23 m) were used. Eight were bedded approximately twice a week with corn stover and the remaining eight feedlot pens were not bedded. Angus steers (n = 138) were blocked by live weights (lighter and heavier) with 7 to 10 animals per pen. The trial was a 2?×?2 factorial design with factors of two protein levels and two bedding types (bedding vs. non bedding), with four replicates. The study was conducted from June through September and consisted of four ?28-day periods. Manure from each pen was scrapped once every 28 days and composite manure samples from each pen were collected. Air samples from pen surfaces were sampled in Tedlar bags using a Vac-U-Chamber coupled with a portable wind tunnel and analyzed with a greenhouse gas gas chromatograph within 24 hr of sampling. The manure samples were analyzed for crude protein (CP), total nitrogen (TN), ammonia (NH3), total volatile fatty acid (TVFA), total carbon (TC), total phosphorus (TP), and potassium (K). The air samples were analyzed for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) concentrations. The concentration of TN was significantly higher (p < 0.05) in manure from pens with cattle fed the high protein diets. The volatile fatty acids (VFAs) such as acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids concentrations were similar across both treatments. There were no significant differences in pen surface GHG emissions across manure management and dietary crude protein levels.

Implications: Livestock manure produces odor and emits GHGs (CO2, CH4, and N2O) at different stages of production and management practices that have significant environmental concerns. Thus, it is important to measure GHG contributions from different sources and develop appropriate mitigation strategies for minimizing GHG contribution from livestock production facilities. Two dietary protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding were studied. The results indicated that dietary protein levels and bedding vs. no bedding had very little effect on GHG emissions and manure composition under open feedlot conditions in North Dakota climatic conditions and management practices.  相似文献   
998.
This work presents a short review of adsorptive materials proposed and tested for removing phthalates from an aqueous environment. The objective is not to present an exhaustive review of all the types of adsorbents used, but to focus on selected types of "innovative" materials. Examples include modified activated carbon, chitosan and its modifications, β-cyclodextrin, and specific types of biomass, such as activated sludge from a wastewater treatment plant, seaweed and microbial cultures. Data from the literature do not confirm the existence of a broad-spectral adsorbent with high sorption efficiency, low production costs and environmentally friendly manufacture. According to the coefficients of Freundlich's isotherm, the most promising adsorbent of those mentioned in this work appears to be the biomass of activated sludge, or extracellular polysaccharides extracted from it. This material benefits from steady production, is cheap and readily available. Nevertheless, before putting it in practice, the treatment and adaptation of this raw material has to be taken into consideration.  相似文献   
999.
The present study aims to identify the potential habitat for swamp deer (Cervus duvauceli duvauceli Cuvier) in Jhilmil Jheel Conservation Reserve in the Uttarakhand province of India using multi-criteria analysis. The study area represents one of the last remnant habitats of the flagship species, the swamp deer in Uttarakhand, which is considered as vulnerable. The study showed that only 6.08% of the study area (225 km2) was highly suitable to suitable for the swamp deer. An area of 135.52 km2 (60.23%) turned out to be moderately suitable. Within the officially designated Conservation Reserve (area 37.84 km2), 10.91% (4.13 km2) area was found highly suitable to suitable, while 74.19% (28.07 km2) happens to be moderately suitable. Only 14 km2 area, which was found as suitable habitat for swamp deer falls short of the space required by a population of 134 animals. The problem could be mitigated if the agricultural land (2.47 km2) adjacent to the Jhilmil Jheel is brought under the Reserve management. This would provide additional area to meet the fodder requirement. The study brings out a particularly grim situation with limited options for conservation and management of the swamp deer in the Indo-Gangetic plains. It also emphasizes the role of geospatial techniques in quick appraisal of habitat attributes and identification of potential sites for protected areas.  相似文献   
1000.
Sediment and phosphorus (P) transport from the Minnesota River Basin to Lake Pepin on the upper Mississippi River has garnered much attention in recent years. However, there is lack of data on the extent of sediment and P contributions from riverbanks vis-à-vis uplands and ravines. Using two light detection and ranging (lidar) data sets taken in 2005 and 2009, a study was undertaken to quantify sediment and associated P losses from riverbanks in Blue Earth County, Minnesota. Volume change in river valleys as a result of bank erosion amounted to 1.71 million m over 4 yr. Volume change closely followed the trend: the Blue Earth River > the Minnesota River at the county's northern edge > the Le Sueur River > the Maple River > the Watonwan River > the Big Cobb River > Perch Creek > Little Cobb River. Using fine sediment content (silt + clay) and bulk density of 37 bank samples representing three parent materials, we estimate bank erosion contributions of 48 to 79% of the measured total suspended solids at the mouth of the Blue Earth and the Le Sueur rivers. Corresponding soluble P and total P contributions ranged from 0.13 to 0.20% and 40 to 49%, respectively. Although tall banks (>3 m high) accounted for 33% of the total length and 63% of the total area, they accounted for 75% of the volume change in river valleys. We conclude that multitemporal lidar data sets are useful in estimating bank erosion and associated P contributions over large scales, and for riverbanks that are not readily accessible for conventional surveying equipment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号