The type and amount of indoor air pollutants affects the comfort and quality of indoor environments. Therefore, indoor air
quality is an important issue with different social, economic, and health aspects because people in developing countries spend
most of their time indoors being exposed to different kinds of indoor pollutants. The indoor air quality can be assessed empirically
by measuring the pollutant concentrations or can be predicted by means of mathematical models. An indoor aerosol model describes
the dynamic behavior of indoor air pollutants. The basic concept of indoor air models is the mass-balance-conservation where
several factors that govern the indoor particle concentrations can be described. These factors may include direct emissions
from indoor sources, outdoor aerosol particles penetrating indoors as a result of the ventilation and filtration processes,
deposition onto indoor surfaces, and removal from indoor air by means of ventilation. Here we present principles of indoor
aerosol models and we also give examples of different kind of models. 相似文献
Because aerosol particle deposition is an important factor in indoor air quality, many empirical and theoretical studies have attempted to understand the process. In this study, we estimated the deposition rate of aerosol particles on smooth aluminum surfaces inside a test chamber. We investigated the influence of turbulent intensity due to ventilation and fan operation. We also investigated two important processes in particle deposition: turbophoresis, which is significant for micron particles, and coagulation, which is relevant to ultrafine particles (UFP diameter <0.1 μm) at high particle concentrations. Our analysis included semi-empirical estimates of the deposition rates that were compared to available deposition models and verified with simulations of an aerosol dynamics model. In agreement with previous studies, this study found that induced turbulent intensity greatly enhanced deposition rates of fine particles (FP diameter <1 μm). The deposition rate of FP was proportional to the ventilation rate, and it increased monotonically with fan speed. With our setup, turbophoresis was very important for coarse particles larger than 5 μm. The coagulation of aerosol particles was insignificant when the particle concentration was less than 104 cm?3 during fan operation. The model simulation results verified that the aerosol dynamics module incorporated in our Multi-Compartment and Size-Resolved Indoor Aerosol Model (MC-SIAM) was valid. The behavior of aerosol particles inside our chamber was similar to that found in real-life conditions with the same ventilation rates (0.018–0.39 h?1) and similar air mixing modes. Therefore, our findings provide insight into indoor particle behavior. 相似文献
In this study, long-term aerosol particle total number concentration measurements in five metropolitan areas across Europe are presented. The measurements have been carried out in Augsburg, Barcelona, Helsinki, Rome, and Stockholm using the same instrument, a condensation particle counter (TSI model 3022). The results show that in all of the studied cities, the winter concentrations are higher than the summer concentrations. In Helsinki and in Stockholm, winter concentrations are higher by a factor of two and in Augsburg almost by a factor of three compared with summer months. The winter maximum of the monthly average concentrations in these cities is between 10,000 cm(-3) and 20,000 cm(-3), whereas the summer min is approximately 5000-6000 cm(-3). In Rome and in Barcelona, the winters are more polluted compared with summers by as much as a factor of 4-10. The winter maximum in both Rome and Barcelona is close to 100,000 cm(-3), whereas the summer minimum is > 10,000 cm(-3). During the weekdays the maximum of the hourly average concentrations in all of the cities is detected during the morning hours between 7 and 10 a.m. The evening maxima were present in Barcelona, Rome, and Augsburg, but these were not as pronounced as the morning ones. The daily maxima in Helsinki and Stockholm are close or even lower than the daily minima in the more polluted cities. The concentrations between these two groups of cities are different with a factor of about five during the whole day. The study pointed out the influence of the selection of the measurement site and the configuration of the sampling line on the observed concentrations. 相似文献
Fluazinam is a widely used pesticide employed against the fungal disease late blight in potato cultivation. A specific, repeatable, and rapid high-performance liquid chromatography (HPLC) method utilizing a diode array detector (DAD) was developed to determine the presence of fluazinam in soil. The method consists of acetonitrile (ACN) extraction, clean-up with solid-phase extraction (SPE), and separation using a mobile phase consisting of 70% ACN and 30% water (v/v), including 0.02% acetic acid. HPLC was performed with a C18 column and the detection wavelength was 240 nm. The method was successfully applied to an incubation experiment and to soil samples taken from potato fields where fluazinam had been applied two to three times during the on-going growing season. In the 90-day incubation experiment, analytical standard fluazinam and the commercial fungicide Shirlan® were added to soil samples that had never been treated with fluazinam, and were then extracted with ACN and 0.01 M calcium chloride (CaCl2). Fluazinam was not extractable with CaCl2, indicating that it does not leach to watercourses in the dissolved form. Recovery with ACN extraction for sandy soils was 72–95% immediately after application and 53–73% after 90 days of incubation. Out of the eight potato field soil samples, fluazinam was found in two samples at concentrations of 2.1 mg kg?1 and 1.9 mg kg?1, well above the limit of quantification (0.1 mg kg?1). 相似文献
Comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF-MS) was used for screening and semiquantitation of semivolatile organic compounds in aerosol particles. As the volatility was a prerequisite parameter for the analysis, some compounds were transformed via derivatization such as silylation into more volatile ones. The identification of the analytes was made by comparing the GC retention indices and the TOF mass spectra with the NIST and the Golm metabolome database reference libraries. The data treatment was simplified by exploiting an additional classification of the identified compounds, namely the main functional group or specific element present in the molecule leading to different groups of compounds. This methodology was applied to identify compounds in 30 ± 4 nm, 50 ± 5 nm and total suspended particles (TSP) collected during spring and autumn of 2009 and summer of 2010 at the Station for Measuring Forest Ecosystem Atmosphere Relations (SMEAR II) at Hyyti?l? (Finland). The number of identified compounds was higher than 400, which were the most relevant compounds present in the samples, in terms of concentrations. The analysis of aerosol particles of different sizes, collected simultaneously, revealed that the number of compounds increased with the particle size whereas the normalized response factor decreased in most of the cases, aldehydes being an exception. This decrease could be associated with the formation or aggregation of new compounds onto the particles when they grow in the atmosphere. 相似文献
This paper studies the impact of harvesting, property, and profit taxes on private rotation age in an ongoing rotations model, where the private landowner is interested not only in the present value of harvest revenue, but also in the private amenity services provided by the forest stand. The main finding of the paper is that conventional wisdom about the rotation effects of forest taxes, distilled from the Faustmann model, predominantly ceases to hold. This is because forest taxes distort the relative profitability of timber and amenity production in a way that is sensitive to the precise nature of amenity valuation. Therefore, the design of forest tax policy necessitates good knowledge of the landowner's objective function concerning the type of amenity services. 相似文献
This work presents an overall introduction to the Station for Observing Regional Processes of the Earth System–SORPES in Nanjing, East China, and gives an overview about main scientific findings in studies of air pollution-weather/climate interactions obtained since 2011. The main results summarized in this paper include overall characteristics of trace gases and aerosols, chemical transformation mechanisms for secondary pollutants like O3, HONO and secondary inorganic aerosols, and the air pollution–weather/climate interactions and feedbacks in mixed air pollution plumes from sources like fossil fuel combustion, biomass burning and dust storms. The future outlook of the development plan on instrumentation, networking and data-sharing for the SORPES station is also discussed.
In Central Africa, important carbon stocks are stored in natural forest stands, while activities that modify the carbon storage occur in the forest landscape. Besides clean development mechanisms, the reduction of emission through deforestation and degradation (REDD) initiative is viewed as one way to mitigate climate change. Important forest habitat protection activities have already been implemented with the aim of conserving the biodiversity of the region in a sustainable manner. The main causes of land use changes in the region are small holder subsistence practices and logging activities. Agricultural production has low productivity levels and therefore investments in improved agricultural techniques can both reduce pressure on existing forests and perhaps allow for the reforestation of existing degraded lands. The logging industry is dominated by large, industrial scale, logging operations performing selective logging of specific species and large trees. The adoption of improved forest management practices can reduce the impact of such logging on the ecological integrity and carbon stocks. Some efforts to engage in the carbon market have begun in the region. Further research is needed into the types of projects that will most likely become successful in the region and what locations will offer the greatest benefits. 相似文献
Sustainable development advocates for a balance between socio-economic development and the environment in the pursuit of human
advancement. In Africa, high population growth and inadequate infrastructure in urban areas exert pressure on the environment
and this threatens the health and wellbeing of urban residents. The population of the African continent until the 1960s was
predominantly rural. This scenario has taken a swift turn and some of the major shifts in the global urbanisation process
are taking place on the continent. Factors including natural increase in the population, rural–urban migration, strife and
hunger leading to the internal displacement of populations have exacerbated the urbanisation process in Africa. The situation
has been worsened by the imposition of Western development policies, including structural adjustment programmes on African
nations, which has eroded the subsistence base of rural agricultural communities and further ignited rural urban migration.
The failure of industry to absorb the increasing labour force has created massive unemployment and deepening poverty crisis
in urban centres. Inadequate provision of infrastructure and services to meet the growth in urban populations has resulted
in inefficient spatial development of urban centres, the proliferation of squatter settlements, inadequate basic amenities
including potable water, sanitation and waste disposal. Poor environmental sanitation has resulted in the upsurge of infectious
diseases and deteriorating urban health. Urban populations in Africa are also the worst affected by newly emerging diseases,
particularly HIV/AIDS. The poor bear a disproportionately large share of the problems due to their particular vulnerability
to environmental and health risks.
Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue. 相似文献
Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season. 相似文献