首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   0篇
  国内免费   1篇
安全科学   13篇
废物处理   6篇
环保管理   12篇
综合类   20篇
基础理论   16篇
污染及防治   24篇
评价与监测   1篇
社会与环境   7篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   1篇
  2014年   4篇
  2013年   10篇
  2012年   6篇
  2011年   5篇
  2010年   5篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
61.
Phosphorus removal in a wetland constructed on former arable land   总被引:1,自引:0,他引:1  
Phosphorus in surface runoff water may cause eutrophication of recipient water. This study clarifies the mechanisms of P removal in the wetland of Hovi, Finland, constructed on arable land in 1998. Before the construction, the surface soil (removed in the construction) and subsoil (the current wetland bottom) were analyzed for Al and Fe oxides (Al(ox) and Fe(ox)) reactive in P sorption, and for the distribution of P between various pools as well as for P exchange properties. Retention of P from runoff water within the wetland was studied from 1999 to 2001 in situ and factors affecting the P removal (O2 availability and P concentration in water) were investigated in a laboratory microcosm. The processes taking place in the wetland diminished by 68% the total P load and by 49% the dissolved reactive P load. Desorption-sorption tests indicated that without removal of the surface soil, there would have been a risk of the wetland being a source of P, since the equilibrium P concentration of the soil removed was high compared with the mean P concentration of the inflowing water. The subsoil contained less P and high amounts of reactive oxides, which could bind P. Evidently, the P sorption by Al(ox) played an important role in a first phase removal of P, since the wetland retained P efficiently even under anoxic conditions, where Fe tends to be reduced. Fine-textured, mineral soil on the bottom of the wetland (subsoil of the former arable land) seemed to be very efficient in retaining P from agricultural runoff.  相似文献   
62.
Because aerosol particle deposition is an important factor in indoor air quality, many empirical and theoretical studies have attempted to understand the process. In this study, we estimated the deposition rate of aerosol particles on smooth aluminum surfaces inside a test chamber. We investigated the influence of turbulent intensity due to ventilation and fan operation. We also investigated two important processes in particle deposition: turbophoresis, which is significant for micron particles, and coagulation, which is relevant to ultrafine particles (UFP diameter <0.1 μm) at high particle concentrations. Our analysis included semi-empirical estimates of the deposition rates that were compared to available deposition models and verified with simulations of an aerosol dynamics model. In agreement with previous studies, this study found that induced turbulent intensity greatly enhanced deposition rates of fine particles (FP diameter <1 μm). The deposition rate of FP was proportional to the ventilation rate, and it increased monotonically with fan speed. With our setup, turbophoresis was very important for coarse particles larger than 5 μm. The coagulation of aerosol particles was insignificant when the particle concentration was less than 104 cm?3 during fan operation. The model simulation results verified that the aerosol dynamics module incorporated in our Multi-Compartment and Size-Resolved Indoor Aerosol Model (MC-SIAM) was valid. The behavior of aerosol particles inside our chamber was similar to that found in real-life conditions with the same ventilation rates (0.018–0.39 h?1) and similar air mixing modes. Therefore, our findings provide insight into indoor particle behavior.  相似文献   
63.
Kymijoki, the fourth largest river in Finland, has been heavily polluted by pulp mill effluents as well as the chemical industry. Up to 24,000 ton of wood preservative, chlorophenol known as Ky-5, was manufactured in the upper reaches of the river, an unknown amount of which was discharged into the river between 1940 and 1984. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) occurred as impurities in the final Ky-5 product. The PCDD/F concentrations and burden in the river sediments were studied and the transport of PCDD/Fs from contaminated sites downstream and into the Gulf of Finland in the Baltic Sea was estimated. More than 190 sediment cores were sampled to estimate the volume of contaminated sediments and the total PCDD/F burden. The transport of PCDD/Fs was estimated using sediment traps placed at several sites. The survey revealed that sediments in the river were heavily polluted by PCDD/Fs, the main toxic congener being 1,2,3,4,6,7,8-heptachlorodibenzofuran, a major contaminant in the Ky-5 product. The mean total concentration at the most polluted river site downstream from the main source was 42000 microg kg(-1) d.w. (106 microg I-TEQ kg(-1)). The elevated concentrations in the coastal region and the present estimated transport from the River Kymijoki confirm earlier assessments that the river is a major source of PCDD/F for the Gulf of Finland.  相似文献   
64.
Ecosystem consequences of cyanobacteria in the northern Baltic Sea   总被引:1,自引:0,他引:1  
Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.  相似文献   
65.
The regulation of endogenous metabolites is still not fully understood in aquatic invertebrates exposed concurrently to toxicants and hypoxia. Despite the prevalence of hypoxia in the aquatic environment, toxicity estimations seldom account for multiple stressors thereby differing from natural conditions. In this study, we examined the influence of hypoxia (<30% O2) on contaminant uptake and the composition of intracellular metabolites in Lumbriculus variegatus exposed to benzo(a)pyrene (B(a)P, 3 μg L−1), chlorpyrifos (CPF, 100 μg L−1) or pentachlorophenol (PCP, 100 μg L−1). Tissue extracts of worms were analyzed for 123 metabolites by gas chromatography–mass spectrometry and metabolite levels were then related to treatments and exposure time. Hypoxia markedly increased the accumulation of B(a)P and CPF, which underlines the significance of oxygen in chemical uptake. The oxygen effect on PCP uptake was less pronounced. Succinate and glycerol-3-phosphate increased significantly (p < 0.0001) following hypoxic treatment, whereas sugars, cysteine, and cholesterol were effectively repressed. The buildup of succinate coupled with the corresponding decline in intracellular 2-oxo- and 2-hydroxy glutaric acid is indicative of an active hypoxia inducible factor mechanism. Glutamate, and TCA cycle intermediates (fumarate, and malate) were disturbed and evident in their marked suppression in worms exposed concurrently to hypoxia and PCP. Clearly, hypoxia was the dominant stressor for individuals exposed to B(a)P or CPF, but to a lesser extent upon PCP treatment. And since oxygen deprivation promotes the accumulation of different toxicants, there may be consequences on species composition of metabolites in natural conditions.  相似文献   
66.
    
Fluazinam is a widely used pesticide employed against the fungal disease late blight in potato cultivation. A specific, repeatable, and rapid high-performance liquid chromatography (HPLC) method utilizing a diode array detector (DAD) was developed to determine the presence of fluazinam in soil. The method consists of acetonitrile (ACN) extraction, clean-up with solid-phase extraction (SPE), and separation using a mobile phase consisting of 70% ACN and 30% water (v/v), including 0.02% acetic acid. HPLC was performed with a C18 column and the detection wavelength was 240 nm. The method was successfully applied to an incubation experiment and to soil samples taken from potato fields where fluazinam had been applied two to three times during the on-going growing season. In the 90-day incubation experiment, analytical standard fluazinam and the commercial fungicide Shirlan® were added to soil samples that had never been treated with fluazinam, and were then extracted with ACN and 0.01 M calcium chloride (CaCl2). Fluazinam was not extractable with CaCl2, indicating that it does not leach to watercourses in the dissolved form. Recovery with ACN extraction for sandy soils was 72–95% immediately after application and 53–73% after 90 days of incubation. Out of the eight potato field soil samples, fluazinam was found in two samples at concentrations of 2.1 mg kg?1 and 1.9 mg kg?1, well above the limit of quantification (0.1 mg kg?1).  相似文献   
67.
  总被引:32,自引:0,他引:32  
Composting of contaminated soil in biopiles is an ex situ technology, where organic matter such as bark chips are added to contaminated soil as a bulking agent. Composting of lubricating oil-contaminated soil was performed in field scale ( [Formula: see text] m(3)) using bark chips as the bulking agent, and two commercially available mixed microbial inocula as well as the effect of the level of added nutrients (N,P,K) were tested. Composting of diesel oil-contaminated soil was also performed at one level of nutrient addition and with no inoculum. The mineral oil degradation rate was most rapid during the first months, and it followed a typical first order degradation curve. During 5 months, composting of the mineral oil decreased in all piles with lubrication oil from approximately 2400 to 700 mg (kg dry w)(-1), which was about 70% of the mineral oil content. Correspondingly, the mineral oil content in the pile with diesel oil-contaminated soil decreased with 71% from 700 to 200 mg (kg dry w)(-1). In this type of treatment with addition of a large amount of organic matter, the general microbial activity as measured by soil respiration was enhanced and no particular effect of added inocula was observed.  相似文献   
68.
In Central Africa, important carbon stocks are stored in natural forest stands, while activities that modify the carbon storage occur in the forest landscape. Besides clean development mechanisms, the reduction of emission through deforestation and degradation (REDD) initiative is viewed as one way to mitigate climate change. Important forest habitat protection activities have already been implemented with the aim of conserving the biodiversity of the region in a sustainable manner. The main causes of land use changes in the region are small holder subsistence practices and logging activities. Agricultural production has low productivity levels and therefore investments in improved agricultural techniques can both reduce pressure on existing forests and perhaps allow for the reforestation of existing degraded lands. The logging industry is dominated by large, industrial scale, logging operations performing selective logging of specific species and large trees. The adoption of improved forest management practices can reduce the impact of such logging on the ecological integrity and carbon stocks. Some efforts to engage in the carbon market have begun in the region. Further research is needed into the types of projects that will most likely become successful in the region and what locations will offer the greatest benefits.  相似文献   
69.
Urban Waste Pollution in the Korle Lagoon, Accra, Ghana   总被引:1,自引:0,他引:1  
The Korle Lagoon in Accra, Ghana, has become one of the most polluted water bodies on earth. It is the principal outlet through which all major drainage channels in the city empty their wastes into the sea. Large amounts of untreated industrial waste emptied into surface drains has led to severe pollution in the lagoon and disrupted its natural ecology. The increased levels of industrial activity and consumption by the urban population lead to the generation of copious quantities of waste. Managing the volume of wastes poses a major challenge for the city authorities, particularly, ensuring that all the waste generated is collected for disposal. In Accra, the Waste Management Department is currently capable of collecting only 60 percent of the waste generated daily. The rest is dumped in open spaces, in surface drains, and into water bodies which end up in the Korle Lagoon. High eutrophication levels have developed in the shallow water body. The net effect is that, at the slightest downpour, the lagoon overflows its banks causing regular flooding in parts of the city.The Government of Ghana, having realized the adverse impacts of pollution in the lagoon on the physical and economic environment of Accra, with the support of donor agencies, is implementing measures to restore the lagoon to its natural ecology. Attempts are also being made to get the communities in the catchment area to become involved in managing their environment through environmental education and awareness programes.  相似文献   
70.
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号