首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2484篇
  免费   83篇
  国内免费   697篇
安全科学   130篇
废物处理   167篇
环保管理   195篇
综合类   1107篇
基础理论   429篇
环境理论   1篇
污染及防治   962篇
评价与监测   111篇
社会与环境   54篇
灾害及防治   108篇
  2023年   34篇
  2022年   106篇
  2021年   104篇
  2020年   61篇
  2019年   67篇
  2018年   73篇
  2017年   110篇
  2016年   131篇
  2015年   119篇
  2014年   207篇
  2013年   252篇
  2012年   225篇
  2011年   228篇
  2010年   172篇
  2009年   162篇
  2008年   163篇
  2007年   141篇
  2006年   141篇
  2005年   97篇
  2004年   68篇
  2003年   80篇
  2002年   68篇
  2001年   50篇
  2000年   49篇
  1999年   57篇
  1998年   50篇
  1997年   52篇
  1996年   31篇
  1995年   32篇
  1994年   27篇
  1993年   19篇
  1992年   23篇
  1991年   12篇
  1990年   18篇
  1989年   13篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1958年   2篇
排序方式: 共有3264条查询结果,搜索用时 31 毫秒
851.
Semiconductor photocatalysis is a solution to issues of environmental pollution and energy shortage because photocatalysis can use solar energy to degrade pollutants. The photocatalytic activity can be improved by using composites of ZnO and other semiconductors. Here, composites of ZnO and polymeric graphite-like C3N4 (g-C3N4) with high photocatalytic activities were prepared by microwave synthesis. Products were characterized by X-ray diffraction, transmission electron microscopy, ultraviolet–visible and Fourier transform infrared spectroscopy. The photocatalytic degradation of Rhodamine B was tested under irradiation from a Xe lamp. Results show that adding graphite-like C3N4 promotes the photocatalytic activity of ZnO. Composites with 1.0 wt% g-C3N4 showed the best photodegradation efficiency, and the reaction average energy was approximately 33.71 kJ mol?1.  相似文献   
852.
群体感应抑制剂(QSIs)具有不产生抗药性的特点,从而被作为抗生素的可能替代品,具有广阔的应用前景,因此其存在着与传统抗生素环境联合暴露的可能,但是目前尚缺乏相关联合效应的研究。本文以大肠杆菌(Escherichia coli)为受试生物,测定了7种QSIs(DL-焦谷氨酸、N-乙烯基吡咯烷酮、呋喃酮乙酸酯、2-甲基四氢呋喃-3-酮、3,4-二溴-2(5H)-呋喃酮、(R)-3-吡咯烷醇、D-脯氨醇)分别与磺胺甲恶唑(SMX)和盐酸强力霉素(DH)的二元联合毒性,并初步探讨了它们的联合作用机制。结果表明,前5种QSIs作用于AI-2类信号分子介导的群体感应系统,与AI-2类信号分子竞争结合LsrB蛋白,此通路与SMX、DH的作用通路互不影响,因此联合效应为相加;后2种QSIs作用于AI-1类信号分子介导的群体感应系统,与AI-1类信号分子竞争结合SdiA蛋白,而SMX、DH的作用可能刺激SdiA蛋白的表达,从而需要消耗更多的QSIs与SdiA结合,因而联合效应为拮抗。本实验研究可为传统抗生素与QSIs联合暴露的生态风险评价提供一定理论基础。  相似文献   
853.
Mushrooms are considered as potential bio-remediation agents in soil polluted with heavy metals, while many species which efficiently accumulate them in flesh are edible. Question is if there is any possible culinary use of edible mushrooms with high heavy metal contents? This study aimed to investigate and discuss a fate of cadmium (Cd) in common household-treated fruitbodies of common chanterelle Cantharellus cibarius. The samples of Cantharellus cibarius Fr. were collected from five spatially distanced sites in Poland in 2011–2012. We examined from 267 to 358 fruiting bodies per collection, and in total 1565 fruiting bodies were used. Cadmium in fungal materials from all treatments and processes (mushrooms dried, deep frozen, blanched and pickled) was determined using validated methods by inductively coupled plasma mass spectrometry with dynamic reaction cell. Blanching of fresh chanterelles caused decrease of Cd by around 11 ± 7 to 36 ± 7%, while blanching of deep-frozen mushrooms by around 40 ± 6%. A rate of Cd decrease in chanterelles was similar when the fruiting bodies were blanched for 5 or 15 min and when used was potable or deionized water. Pickling of blanched chanterelles with a diluted vinegar marinade had a pronounced effect on further removal of Cd. Blanched chanterelles when pickled lost an extra 37–71% of Cd. Total leaching rate of Cd from fresh or deep-frozen fruitbodies of chanterelle when blanched and further pickled was between 77 ± 7 and 91 ± 4%. Blanching and pickling highly decreased content of Cd in C. cibarius.  相似文献   
854.
Environmental Science and Pollution Research - Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) with three to five aromatic rings have been documented to ubiquitously occur in environmental...  相似文献   
855.
Assessment of heavy metal (HM) pollution in soil is critical for human health, ecological remediation, and soil conservation. In this study, statistical analyses and geochemical approaches such as enrichment factor (EF), the index of geoaccumulation (Igeo), and potential ecological risk index (RI) were used for characterization and risk assessment of soil HMs through a high-spatial-resolution 385 samples from Tongnan District, an important agricultural practice area in Chongqing Municipality in Southwest China. Igeo and EF indicated that Hg and Cd could be considered as low and moderate polluted, respectively, and others HMs were not a major concern. Comprehensive ecological risk information further demonstrated that the HMs have caused a moderate risk. Principal component analysis (PCA) extracted two principal components (PCs) with eigenvalue >1 explaining about 66.1% of the total variance in the HM data sets, demonstrating major source of anthropogenic activity, phosphate fertilizers, vehicle, and pesticides. These multi-index methods have the capacity of HM assessment in soil, which are useful for soil conservation and ecological remediation.  相似文献   
856.
Vacuum sealing drainage has excellent therapeutic effects on the complex injuries. There is no relevant report on seawater-immersed sulfur mustard injury. The treatment effects were examined with miniature pigs. Injuries were performed on their back followed by vacuum sealing drainage at various pressures for nine days. Injured tissues were sampled up to 30 d after treatment and healing rates, levels of interleukin-6, tumor necrosis factor α, and vascular endothelial growth factor were recorded. Vacuum sealing drainage enhances the healing of sulfur mustard wounds significantly, reduces the interleukin-6 and tumor necrosis factor α levels in the wound, and increases the vascular endothelial growth factor expression. Pressure reduction by 180 mmHg is the most suitable condition for vacuum treatment.  相似文献   
857.
卤代持久性有机污染物(Hal-POPs),如多溴联苯醚(PBDEs)、多氯联苯(PCBs)、滴滴涕(DDT)等是环境中广泛存在的全球性有机污染物,同时它们又是内分泌干扰物,是威胁人类生殖健康的重要因素之一。由于人们每天约有80%以上的时间在室内度过,且室内环境是Hal-POPs人体暴露的主要来源之一,因此室内环境中Hal-POPs对人体内分泌系统的干扰作用及其机理等问题亟待研究,但目前这方面的研究很有限。本文通过综述Hal-POPs在室内环境中的赋存水平和在人体体内的负荷水平及其半衰期,探讨了其对人体内分泌系统尤其是男性生殖健康的影响情况及其可能的机理,并分析了目前研究的不足之处及研究前景,为进一步开展这方面的研究提供借鉴。  相似文献   
858.
Exploration of heavy metals and organic pollutants, their leaching capacity along with health and environmental risks in contaminated industrial construction and demolition waste (ICDW) within a pesticide manufacturing plant were investigated. A maximum content of 90.8 mg?kg–1 Cd was found present in the wastes, which might originate from phosphorus rocks and industrial sulfuric acid used in pesticide production processes. An average concentration of 979.8 mg?kg–1 dichlorovos and other 11 organophosphorus pesticide were also detected. Relatively high leaching rates of around 4.14‰were obtained from laboratory simulated ICDW using both glacial acetic acid-sodium hydroxide and deionized water. Pesticide pollutants had the strongest tendency to retaining on dry bricks (leaching rate 1.68‰) compared to mortar-coatings, etc. due to their different physical characteristics and octanol-water partioning coefficient. Mobility of pesticide from on-site ICDW by water was spatially correlated to waste types, process sections and human activities, with a flux of leaching rate between 5.9‰ to 27.4%. Risk-based corrective action (RBCA) model was used to simulate the risk of contaminated ICDW debris randomly scattered. Oral and dermal ingestion amount by local workers was 9.8 × 10–3 and 1.9 × 10–2 mg?(kg?d)–1, respectively. Potential leaching risk to aquatic systems exceeded the limit for nearly 75% waste. Environmental and health risk exceedance was found in most ICDW, while the risk value of the most severely contaminated brick waste was 660 times beyond critical level. Implications for waste management involving construction and deconstruction work, waste transferring and regulation supplying were also provided.
  相似文献   
859.
A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and their effects on natural organic matter (NOM) removal from river water were investigated. NOM in the samples was fractionated based on molecular weight and hydrophobicity. The disinfection byproduct formation potentials of each fraction and their removal efficiencies were also evaluated. The results showed that chitosan was the most promising bubble modifier compared with a surfactant and a synthetic polymer. Tiny bubbles in the DAF pump system facilitated the adsorption of chitosan onto microbubble surfaces. The hydrophobic NOM fraction was preferentially removed by chitosan-modified bubbles. Decreasing the recycle water pH from 7.0 to 5.5 improved the removal of hydrophilic NOM with low molecular weight. Likewise, hydrophilic organic compounds gave high dihaloacetic acid yields in raw water. An enhanced reduction of haloacetic acid precursors was obtained with recycle water at pH values of 5.5 and 4.0. The experimental results indicate that NOM fractions may interact with bubbles through different mechanisms. Positive bubble modification provides an alternative approach for DAF to enhance NOM removal.
  相似文献   
860.

CoFe2O4/ordered mesoporous carbon (OMC) nanocomposites were synthesized and tested as heterogeneous peroxymonosulfate (PMS) activator for the removal of rhodamine B. Characterization confirmed that CoFe2O4 nanoparticles were tightly bonded to OMC, and the hybrid catalyst possessed high surface area, pore volume, and superparamagnetism. Oxidation experiments demonstrated that CoFe2O4/OMC nanocomposites displayed favorable catalytic activity in PMS solution and rhodamine B degradation could be well described by pseudo-first-order kinetic model. Sulfate radicals (SO4 ·) were verified as the primary reactive species which was responsible for the decomposition of rhodamine B. The optimum loading ratio of CoFe2O4 and OMC was determined to be 5:1. Under optimum operational condition (catalyst dosage 0.05 g/L, PMS concentration 1.5 mM, pH 7.0, and 25 °C), CoFe2O4/OMC-activated peroxymonosulfate system could achieve almost complete decolorization of 100 mg/L rhodamine B within 60 min. The enhanced catalytic activity of CoFe2O4/OMC nanocomposites compared to that of CoFe2O4 nanoparticles could be attributable to the increased adsorption capacity and accelerated redox cycles between Co(III)/Co(II) and Fe(III)/Fe(II).

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号