首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   1篇
  国内免费   3篇
安全科学   5篇
废物处理   10篇
环保管理   9篇
综合类   34篇
基础理论   38篇
污染及防治   39篇
评价与监测   8篇
社会与环境   10篇
  2022年   2篇
  2021年   2篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   8篇
  2012年   10篇
  2011年   13篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   9篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1966年   1篇
  1965年   2篇
  1964年   2篇
  1963年   1篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
排序方式: 共有153条查询结果,搜索用时 46 毫秒
121.
We evaluate the reaction hazards of triethylaluminum (TEA) under closed conditions for safe treatment of aluminum alkyls. The explosive reactions of TEA are difficult to be estimated using thermal analysis because the estimate reactions are too slow under these conditions. The results of our closed vessel tests and chemical equilibrium calculations show that the TEA and water system mixture in closed conditions decomposes into lower-molecular-weight compounds than the products by using well-known hydrolysis of TEA. The present work also demonstrates that large temperature and pressure increases could occur because of the existence of TEA and aluminum hydroxide. Since aluminum hydroxide contains water as alumina hydrates, aluminum hydroxide could have been the source of water at high temperatures and could have contributed to the mixed reaction between TEA and water.  相似文献   
122.
Diffusion mechanism of chloride ions in sodium montmorillonite   总被引:4,自引:0,他引:4  
For safety assessment of geological disposal of HLW, it is necessary to understand the diffusion mechanism of radionuclides in compacted bentonite. In this study, the diffusion behavior of chloride ions in compacted montmorillonite was studied from the viewpoints of the activation energy for apparent diffusion and the basal spacing of the compacted montmorillonite. A unique change in the activation energy as a function of the dry density of the montmorillonite was found. The activation energy decreased from 17.4 to 13.5 kJ mol-1 as the dry density increased from 0.7 to 1.0 Mg m-3 and increased to 25.1 kJ mol-1 at dry densities above 1.0 Mg m-3. The basal spacing of 1.88 nm, corresponding to the three-water layer hydrate state, was not observed by X-ray diffraction (XRD) until the dry density increased to 1.0 Mg m-3, where the minimum activation energy was obtained. On the other hand, a basal spacing of 1.56 nm, corresponding to the two-water layer hydrate state, was observed at the dry densities of 1.4 Mg m-3 and above, where the activation energies were more than 22 kJ mol-1. These experimental results suggest that there are at least two additional diffusion processes that can raise or reduce the activation energy and are affected by water in the region adjacent to the montmorillonite surfaces. If the "Grahame model" can be introduced to describe the electrical double layer, surface diffusion will be considered the possible predominant diffusion process, even for anions like chloride ions.  相似文献   
123.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   
124.
Water pollution, evident by negative values of redox potential in waters, occurs at the lagoonal coast located near the densely populated area of Fongafale Islet on Funafuti Atoll, Tuvalu, Central Pacific. Sediment microbial quinone analysis revealed that these coastal sediments exhibit 2.7–10.4 times more microbial biomass, significantly different microbial community structure and low microbial diversity, when compared to an undisturbed natural coastal sediment. Thus, the pollution is chronic. By considering the total land use/coverage on the islet, the situation of septic tank installations, temporal changes in water redox potential and Escherichia coli numbers in the coastal waters and the spatial distribution of acid volatile sulfide in the sediments, we conclude that domestic wastewater is the primary source of pollution. This pollution is proposed to occur via the following mechanism: during ebb tides, domestic wastewater leaking from bottomless septic tanks and pit toilets run off into the lagoonal coast. Tide changes control the pollution load of domestic wastewater.  相似文献   
125.
126.
127.
Leachate accumulated at the Nakazono Landfill in Asahikawa, Japan due to an inadequate leachate collection and drainage system. To reduce the level of leachate in the landfill and promote the stabilization of waste, many passive gas vents were installed in addition to leachate collection vaults. This study evaluated the distribution and movement of leachate in the landfill by measuring leachate levels and conducting tracer tests in the gas vents.Water levels varied widely among gas vents and depended mainly on the vent’s original ground level and depth. Leachate velocity varied greatly; it was high in the upper layers of the saturated zone in a gas vent, but this was only a superficial velocity caused by inflow from unsaturated layers. A sharp decrease in total organic carbon observed in most gas vents after installation was likely due to the effect of aerobic biodegradation in the unsaturated waste layer. This effect was limited to a small aerobic zone around the gas vent.  相似文献   
128.
Four toxic species of puffers (Takifugu pardalis, T. poecilonotus, T. vermicularis and T. niphobles) secreted large amounts of tetrodotoxin into the surrounding water immediately after being stimulated by electric shock. The total amount of toxin secreted ranged from 2 000 to 50 000 MU depending upon the specimen. The amount of toxin secreted seemed to be related to the toxicity of individuals. Non-toxic specimens of T. rubripes did not secrete any toxin. The stimulation always caused inflation of puffers, and this is generally accepted as a repelling behavior of these species. The secreted tetrodotoxin may act as a repellent to predators.  相似文献   
129.
Biphenyl was found to be converted to mutagenic compounds by UV irradiation with a high-pressure mercury lamp in nitrate aqueous solution under neutral conditions. The mutagenicity of the reaction mixture increased in proportion to the nitrate ion concentration. The most mutagenic product was dinitro dihydroxy biphenyl, and the main products in this reaction were 2-hydroxy-3-nitrobiphenyl and 4-hydroxy-3-nitrobiphenyl.  相似文献   
130.
APM was collected and trace elements existing in the particles were monitored since May 1995 in this study. APM sample was collected separately by size (d < 2 microm, 2-11 microm and >11 microm) on the roof of the university building (45 m above ground) in the campus of Faculty of Science and Engineering, Chuo University, Tokyo, Japan, using an Anderson low volume air sampler. The collected sample was digested by HNO3, H2O2 and HF using a microwave oven, and major elements (Na, Mg, Al, K, Ca and Fe) were measured by ICP-AES, and trace elements (Li, Be, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba and Pb) were measured by ICP-MS. It was observed that the APM concentration was higher between the winter and the spring, compared to during the summer. The enrichment factor was calculated for each element in each set of APM (d < 2 microm, 2-11 microm and >11 microm). Seasonal trends of enrichment factors were examined, and the elements were classified into 3 groups according to the common seasonal behavior. It is likely that the elements in the same group have common origins. Toxic pollutant elements (Sb, Se, Cd, Pb and As) were found in small particles with d of <2 microm in concentrated levels. Antimony (Sb) had the highest enrichment factor, and the results suggested that Sb level in APM was extremely high. The origins of Sb were sought, and wastes from plastic incineration and brake pad wears of automobiles were suspected. Each set of APM (d < 2 microm, 2-11 microm and >11 microm) was classified by the shape, and the shape-dependent constituents of a single APM particle were quantitatively measured by SEM-EDX. High concentration of Sb was found in APM <2 microm and square particles. Particles less than 2 microm and square shaped particles were major particles produced by actual car braking experiments. From these experimental results it was concluded that the source of Sb in squared APM <2 microm is considered to be from brake pad wear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号