首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   3篇
  国内免费   3篇
安全科学   6篇
废物处理   13篇
环保管理   5篇
综合类   9篇
基础理论   16篇
污染及防治   26篇
评价与监测   28篇
社会与环境   4篇
  2023年   2篇
  2022年   11篇
  2021年   15篇
  2020年   6篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   5篇
  2014年   4篇
  2013年   15篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  1994年   1篇
  1966年   1篇
排序方式: 共有107条查询结果,搜索用时 687 毫秒
91.
The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg?1) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.  相似文献   
92.
Nitrates leaching from agricultural land in Hamadan, western Iran   总被引:2,自引:0,他引:2  
Nitrogen (N) is vital for plant and microbial growth and rather large amounts are required by most arable and horticulture plants. High nitrate (NO3) levels of water supplies have been attributed to leaching from the soil and into water systems. In the arid and semi-arid regions, irrigation water carries NO3 into groundwater. This study was conducted to investigate NO3 pollution of groundwater in Hamadan, western Iran. The water samples were mostly taken from domestic and community wells. In this area, the drinking water supply comes mainly from groundwater sources. Nitrate concentrations in the well samples varied from 3 to 252 with the average of 49 mg l−1. Results showed that of 311 wells, 196 (63%) had levels less than 50 mg l−1 and 115 (37%) had levels in excess of the 50 mg l−1 NO3. Agriculture is the dominant land use in the area and application of N fertilizers clearly has an impact on groundwater. If agricultural losses remain stable, it could be expected that the concentration of NO3 in groundwater will reach or exceed the international recommendations for drinking water (50 mg l−1) in the future. Irrigation with high NO3 groundwater can minimise the requirement for N fertilizers. To maintain yield increase and minimise NO3 pollution of the groundwater, best management practices, for N fertilizer use should be applied and excessive fertilizer application prevented.  相似文献   
93.
During the past two decades, significant efforts have been made to study contaminant transport in the presence of colloids. Several researchers reported that colloidal particles could enhance the migration of contaminants in groundwater by reducing retardation factor. When the colloidal particles are present in the aquifer, the subsurface system can be considered as a three-phase system with two solid phases and an aqueous phase. The interaction between contaminants, colloids, and solid matrix should be considered in assessing the fate and transport of the contaminant in the groundwater flow system. In this study, a one-dimensional numerical model is developed by employing a fully implicit finite difference method. This model is based on mass balance equations and mass partition mechanisms between the carriers and solid matrix, as well as between the carriers and contaminants in a saturated homogeneous porous medium. This phenomenon is presented by two approaches: equilibrium approach and fully kinetic first-order approach. The formulation of the model can be simplified by employing equilibrium partitioning of particles. However, contaminant transport can be predicted more accurately in realistic situations by kinetic modeling. To test the sensitivity of the model, the effect of the various chemical and physical coefficients on the migration of contaminant was investigated. The results of numerical modeling matched favorably with experimental data reported in the literature.  相似文献   
94.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   
95.
Dilute sulfuric acid pretreatment was used to improve the biomethane production from wheat plant (WP) via mesophilic anaerobic digestion. The pretreatments were performed at 121°C for different time durations of 10, 30, 60, and 120 min. The maximum methane yield of 302.4 mL/g volatile solids (VS) was obtained after the pretreatment for 120 min, which was 15.5% higher than that of the untreated WP. The highest amounts of lignin removal (15.2%) and xylan degradation (91.5%) were also achieved after this pretreatment. The pretreatment for 60 min enhanced the methane yield by 8.9%, while the pretreatments for 10 and 30 min had no positive effects on the methane yield. All of the pretreatments significantly removed the hemicelluloses. Moreover, the qualitative analysis of the untreated and pretreated WP structure showed significant reduction in the crystallinity index accompanied by the destruction of surface layers of WP structure after pretreatment.  相似文献   
96.
97.
98.
The amounts and forms of potentially mobile phosphorus (P) in surface sediments of Qarun and Wadi El-Rayan lakes were evaluated during winter and summer using a sequential chemical extraction. Five sedimentary P fractions were separately quantified: loosely sorbed P (NH4Cl-P), iron-associated P (BD-P), calcium- bound P (HCl-P), metal oxide bound P (NaOH-P), and residual P (organic and refractory P). The results indicated that the fractional composition of the examined lakes was different while the total P concentrations were approached. The inorganic P in the surface sediment mainly consisted of Ca-P followed by Fe-P in Qarun Lake, while Al-P took the second order in Wadi El-Rayan lakes. The ranks order of the different P extracts were HCl-P > residual-P ≈ NaOH-P > NH4Cl-P > BD-P and residual-P > NH4Cl-P > HCl-P > NaOH-P > BD-P for Qarun and Wadi El-Rayan lakes, respectively.  相似文献   
99.
Assessment of the chemical components of Famenin groundwater,western Iran   总被引:2,自引:0,他引:2  
The Faminin area in the semi-arid Hamadan state, western Iran is facing a serious deficiency in groundwater resources due to an increasing demand associated with rapid population growth and agricultural development. The chemical composition of 78 well samples throughout the Faminin area was determined with the aim of evaluating the concentration of the background ions and identifying the major hydrogeochemical processes that control the groundwater chemistry. The similarity between rock and groundwater chemistries in the recharge area indicates a significant rock-water interaction. The hydrochemical types Na–HCO3 and Na–SO4 are the predominate forms in the groundwater, followed by water types Ca–HCO3 and Na–Cl. The high values of electrical conductivity and high concentrations of Na+, Cl, SO42− and NO3 in the groundwater appeared to be caused by the dissolution of mineral phases and would appeared to be caused by anthropogenic activities, such as intense agricultural practices (application of fertilizers, irrigation practice), urban and industrial waste discharge, among others.  相似文献   
100.
We studied the sorption behaviour of fullerene nano-C(60) particles (nC(60)) in soil from binary solvent mixtures of ethanol-water in order to critically evaluate the previous reports in the literature that the partitioning mechanism explains the soil sorption of fullerene C(60) as hydrophobic molecules. The sorption of nC(60) particles was studied in a range of solvent mixtures by changing volume fractions of ethanol from 20 to 100 percent. Sorption and particle characteristics were found to be very different in ethanol : water mixtures above and below 60% ethanol. In the range of 20-60% ethanol, sorption increased from 1.2 to 14.6 L kg(-1) accompanied by a change in zeta (ζ) potential from -32.4 to -7.2 mV. This observation can be attributed to hydrophilic interactions that negatively charged nC(60) particles undergo with soil colloids and water molecules. From 60% to 100% ethanol volume fractions, hydrophobic interactions of weakly charged nanoparticles may control the overall extent of soil sorption. The findings of this study indicate the importance of hydrophilic forces in controlling the sorption behaviour of nC(60) particles which are stabilized in water dominated solvent mixtures. The validity of the partitioning mechanism and K(OC) modelling approach in describing and estimating the sorption of nC(60) particles in soil (previously suggested in the literature) are, therefore, questioned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号