首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   1篇
  国内免费   1篇
安全科学   5篇
废物处理   16篇
环保管理   10篇
综合类   9篇
基础理论   12篇
污染及防治   56篇
评价与监测   9篇
社会与环境   1篇
  2023年   2篇
  2022年   13篇
  2021年   11篇
  2020年   7篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   8篇
  2015年   2篇
  2014年   1篇
  2013年   16篇
  2012年   7篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1995年   1篇
  1992年   2篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1974年   2篇
  1966年   1篇
  1965年   1篇
  1964年   2篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
111.
14C-carbofuran penetrated readily into seeds of Vicia faba and the rate of penetration was found to be dose dependent. The percentage of bound residues was generally low and did not exceed 3% of the applied dose. When the bound residues were fed to rats 46% of the radioactivity was eliminated via CO2 and urine, while tissues contained 25%. Carbofuran phenol and 3-hydroxy carbofuran represented the main metabolites in the urine. These data indicate that bean-bound carbofuran residues are highly bioavailable to rats. Feeding mice with bound carbofuran residues for 90 days led to inhibition of erythrocyte cholinesterase activity after 30 days (35-40%) while the plasma enzyme remained unaffected. Serum transaminases and blood urea nitrogen were significantly elevated, indicating injury to hepatic and renal structures. The results strongly suggest that the bound residues can induce adverse biological effects in mice.  相似文献   
112.
113.

Chitosan/zeolite-A hybrid structure (CS/Z.A) was synthesized and characterized as a multifunctional and environmental adsorbent for the Cd (II) and As (V) ions. The adsorption capacities of CS/ZA for Cd (II) and AS (V) are 170 mg/g and 125 mg/g, respectively which are higher values than several adsorbents in literature. The kinetic study demonstrates Pseudo-First-order behavior for the Cd (II) adsorption process and Pseudo-second order for the As (V) uptake reactions. The Cd (II) and As (V) uptake reactions follow the Freundlich equilibrium behavior with heterogeneous and multilayer adsorption properties. The kinetic and equilibrium studies in addition to the Gaussian energy {6.35 kJ/mol [Cd (II)] and 9.44 kJ/mol [As (V)]} demonstrate physical properties for the Cd (II) adsorption mechanism and more chemical behavior for the As (V) adsorption mechanism. The thermodynamic study declares exothermic, spontaneous, and favorable adsorption reactions for Cd (II) and As (V) by CS/Z.A composite. The CS/Z.A is of significant capacity for Cd (II) and As (V) ions in the existence of other competitive dissolved anions (PO43?, NO3?, and SO42?) and other metals [Zn (II), Co (II), and Pb (II)]. Finally, the CS/Z.A composite is a recyclable product and can be applied in effective Cd (II) and As (V) decontamination processes for five runs.

  相似文献   
114.
Environmental Science and Pollution Research - Toxoplasmosis is a zoonotic disease caused by an obligatory intracellular parasite, Toxoplasma gondii. The congenital form of the disease is a...  相似文献   
115.

Per- and polyfluoroalkyl substances (PFAS) encompass a wide range of compounds containing carbon–fluorine bonds. Due the strength of this bond and the high electronegativity of fluorine atoms, PFAS display stability, wettability and other characteristics that are unique for industrial applications and products. However, PFAS induce adverse effects on the environment and human health. Here we review the chemistry, synthesis, properties, analysis, occurrence in water, filtration, removal and oxydation of PFAS.  We highlight emerging hybrid treatments to remove PFAS from water.

  相似文献   
116.
Environmental Science and Pollution Research - The removal of ibuprofen (IBP) from the aqueous solution by metal–organic frameworks such as UiO-66, UiO-66-NH2, and a binary MOF...  相似文献   
117.

Producing high-quality graphene sheets from plastic waste is regarded as a significant economic and environmental challenge. In the present study, unsupported Fe, Co, and Fe–Co oxide catalysts were prepared by the combustion method and examined for the production of graphene via a dual-stage process using polypropylene (PP) waste as a source of carbon. The prepared catalysts and the as-produced graphene sheets were fully characterized by several techniques, including XRD, H2-TPR, FT-IR, FESEM, TEM, and Raman spectroscopy. XRD, TPR, and FT-IR analyses revealed the formation of high purity and crystallinity of Fe2O3 and Co3O4 nanoparticles as well as cobalt ferrite (CoFe2O4) species after calcining Fe, Co, and Fe–Co catalysts, respectively. The Fe–Co catalyst was completely changed into Fe–Co alloy after pre-reduction at 800 °C for 1 h. TEM and XRD results revealed the formation of multi-layered graphene sheets on the surface of all catalysts. Raman spectra of the as-deposited carbon showed the appearance of D, G, and 2D bands at 1350, 1580, and 2700 cm−1, respectively, confirming the formation of graphene sheets. Fe, Co, and Fe–Co catalysts produced quasi-identical graphene yields of 2.8, 3.04, and 2.17 gC/gcat, respectively. The graphene yield in terms of mass PP was found to be 9.3, 10.1, and 7.2 gC/100gPP with the same order of catalysts. Monometallic Fe and Co catalysts produced a mix of small and large-area graphene nanosheets, whereas the bimetallic Fe–Co catalyst yielded exclusively large-area graphene sheets with remarkable quality. The higher stability of Fe–Co alloy and its carbide phase during the growth reaction compared to the Fe and Co catalysts was the primary reason for the generation of extra-large graphene sheets with relatively low yield. In contrast, the segregation of some metallic Fe or Co particles through the growth time was responsible for the growth small-area graphene sheets.

  相似文献   
118.
Journal of Polymers and the Environment - In this research, the antibacterial effect of curcumin entrapped in polymeric nanoparticles (mPEG-PCL/curcumin) on resistant bacteria were investigated....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号