首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   8篇
  国内免费   34篇
安全科学   10篇
废物处理   40篇
环保管理   44篇
综合类   54篇
基础理论   108篇
污染及防治   419篇
评价与监测   62篇
社会与环境   43篇
灾害及防治   4篇
  2023年   29篇
  2022年   154篇
  2021年   144篇
  2020年   46篇
  2019年   47篇
  2018年   41篇
  2017年   52篇
  2016年   45篇
  2015年   28篇
  2014年   35篇
  2013年   40篇
  2012年   23篇
  2011年   24篇
  2010年   10篇
  2009年   9篇
  2008年   12篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1974年   1篇
排序方式: 共有784条查询结果,搜索用时 296 毫秒
551.
The current study examined the effect of calcium (Ca) and ethylenediaminetetraacetic acid (EDTA) on arsenic (As) uptake and toxicity to spinach (Spinacia oleracea) as well as assessed the potential human health risks. Spinach seedlings were exposed to three levels of As (25, 125, and 250 μM) alone or together with three levels of EDTA (25, 125, and 250 μM) and Ca (1, 5, and 10 mM). The effect of EDTA and Ca was assessed in terms of As contents in roots and shoots, hydrogen peroxide production, chlorophyll contents, and lipid peroxidation. The accumulation and toxicity of As to spinach plants increased with increasing As levels in nutrient solution. Exposure to As resulted in lipid peroxidation and reduced chlorophyll contents. The highest level of As alone (250 μM) showed highest human health risk (hazard quotient of 7.09 at As-250). Addition of EDTA enhanced As accumulation by spinach, while reduced As toxicity to spinach, as well as human health risk (hazard quotient of 4.01 at As-250). Similarly, Ca significantly reduced As toxicity to spinach and the human health risks (hazard quotient of 3.79 at As-250) by reducing its accumulation in spinach. Higher levels of Ca were more effective in reducing As uptake and toxicity as well as enhancing chlorophyll contents.  相似文献   
552.
This study evaluates a remotely sensed and two ground‐based potential evapotranspiration (PET) products for hydrologic application in the Upper Colorado River Basin (UCRB). The remotely sensed Moderate Resolution Imaging Spectroradiometer product (MODIS‐PET) is a continuous, daily time series with 250 m resolution derived using the Priestley‐Taylor (P‐T) equation. The MODIS‐PET is evaluated against regional flux tower data as well as a synthetic pan product (Epan; 0.125°, daily) derived from the North American Land Data Assimilation System (NLDAS) and a Hargreaves PET derived from DAYMET variables (DAYMET‐PET; 1 km, daily). Compared to point‐scale PET computed using regional flux tower data, the MODIS‐PET had lower errors, with RMSE values ranging from 2.24 to 2.85 mm/day. Epan RMSE values ranged from 3.70 to 3.76 mm/day and DAYMET‐PET RMSE values ranged from 3.55 to 4.58 mm/day. Further investigation showed biases in temperature and radiation data contribute to uncertainty in the MODIS‐PET values, while bias in NLDAS temperature, downward shortwave (SW↓), and downward longwave (LW↓) propagate in the Epan estimates. Larger discrepancies between methods were observed in the warmer, drier regions of the UCRB, however, the MODIS‐PET was more responsive to landcover transitions and better captured basin heterogeneity. Results indicate the satellite‐based MODIS product can serve as a viable option for obtaining spatial PET values across the UCRB.  相似文献   
553.
The present article uses the Autoregressive Distributed Lag (ARDL) bounds testing procedure to identify the impact of immigration and economic growth on electricity consumption in the case of North Cyprus using annual data from 1977 to 2007. The results suggest that both economic growth and immigration are in a long-run equilibrium relationship with electricity consumption.  相似文献   
554.
555.
Application of biochars to soils may stabilize soil organic matter and sequester carbon (C). The objectives of our research were to study in vitro C mineralization kinetics of various biochars in comparison with wheat straw in three soils and to study their contribution to C stabilization. Three soils (Oxisol, Alfisol topsoil, and Alfisol subsoil) were incubated at 25°C with wheat straw, charcoal, hydrothermal carbonization coal (HTC), low-temperature conversion coal (LTC), and a control (natural organic matter). Carbon mineralization was analyzed by alkali absorption of CO released at regular intervals over 365 d. Soil samples taken after 5 and 365 d of incubation were analyzed for soluble organic C and inorganic N. Chemical characterization of biochars and straw for C and N bonds was performed with Fourier transformation spectroscopy and with the N fractionation method, respectively. The LTC treatment contained more N in the heterocyclic-bound N fraction as compared with the biochars and straw. Charcoal was highly carbonized when compared with the HTC and LTC. The results show higher C mineralization and a lower half-life of straw-C compared with biochars. Among biochars, HTC showed some C mineralization when compared with charcoal and LTC over 365 d. Carbon mineralization rates were different in the three soils. The half-life of charcoal-C was higher in the Oxisol than in the Alfisol topsoil and subsoil, possibly due to high Fe-oxides in the Oxisol. The LTC-C had a higher half-life, possibly due to N unavailability. We conclude that biochar stabilization can be influenced by soil type.  相似文献   
556.
Water is strongly linked with the overall development framework of the Brahmaputra basin. However, the absence of integrated management of Brahmaputra water resources and lack of coordination among the riparian states constitutes an ongoing threat to future development plans within the basin. Brahmaputra's abundant hydropower potential can help give riparian countries a safer energy future that is the key driving force behind the prospect of potential cooperation. This paper analyses the current status of Brahmaputra water resources and identifies the perspectives of riparian countries regarding the development of the Brahmaputra basin. It also identifies the opportunities for cooperation and regional development through integrated water development and management of the Brahmaputra basin. It is essential to develop an integrated water resources management approach involving all riparians to foster regional development and overcome the prospect of severe water conflict along the Brahmaputra basin.  相似文献   
557.
Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH4) emission resulting from rice cultivation. In laboratory incubations, CH4 production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt−1), while observed CO2 production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH4 emission rates from the rice planted potted soils significantly decreased with the increasing levels (2–20 Mg ha−1) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha−1 application level of the amendments, total seasonal CH4 emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH4 production rates as well as total seasonal CH4 flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens’ activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity.  相似文献   
558.
For safe and sustainable management of poultry litter, it is important to evaluate and understand the chemical forms and concentrations of their constituent trace elements during treatment for disposal. This experiment was carried out to compare changes in metal (Cu, Mn, Zn, Pb and Ni) fractions in chicken and duck litter after incineration at temperatures ranging from 200 to 900 degrees C. The metals were stepwise fractionated into exchangeable, adsorbed, organically bound, carbonate precipitated and residual forms by extracting with 0.5M KNO3, de-ionized water, 0.5M NaOH, 0.05M Na2 EDTA and 4M HNO3, respectively. The content of total metal and other elements (i.e., Ca, Mg and K) were was also determined. Results showed an increasing trend in the total concentrations of metals with increasing temperature with higher amounts in chicken litter ash (CLA) than duck litter ash (DLA). Higher temperatures significantly reduced the levels of H2O-soluble Mn, Zn and Ni and enhanced those of Cu and Pb. The metal fractions extracted by EDTA and HNO3 increased directly with increasing temperature while the fraction extracted with KNO3 and NaOH decreased with ashing. For Cu, Mn, Pb and Ni, the amount extracted varied in the order EDTA>HNO3>NaOH>KNO3>H2O, but the absolute amounts differed between CLA and DLA. Peak concentrations of the total metals were achieved at the highest burning temperature. The amount of H2O soluble Ca and Mg decreased and K increased in both CLA and DLA with temperature. Total and exchangeable forms of cations increased with increasing temperature. Total Ca was highest in DLA, whereas total Mg and K were higher in CLA. This study indicated that incinerating poultry litter before soil application may have mixed effects on the vulnerable metal fractions by increasing or decreasing some fractions, depending on poultry type.  相似文献   
559.
Increasing soil carbon (C) storage is crucial to addressing climate change and ensuring food security. The C sequestration potential of the world’s cropland soil is 0.4–0.8 Pg soil C year?1, which may be achieved through the adoption of recommended management practices (RMPs), including fertilizer management. This study aimed to quantitatively evaluate the influence of long-term application of different fertilizers and straw retention on soil organic carbon (SOC) storage, to compare the calculated response ratios with Intergovernmental Panel on Climate Change (IPCC)-recommended default relative stock change factors, and to propose recommendations for enhancing SOC sequestration. The meta-analysis indicated that the long-term application of chemical fertilizers (CF), organic fertilizers (OF), combined chemical and organic fertilizers (CFOF), and straw return (SR) significantly enhanced the SOC storage. Response ratios varied significantly (p < 0.05) across different fertilization measures and climatic zones, and was sensitive to the initial SOC content. The mean response ratio was 0.94 for no fertilizer (NF), 1.08 for CF, 1.48 for OF, 1.38 for CFOF, and 1.28 for SR. When IPCC default values for response ratios were applied, SOC storage with OF and CFOF treatments in warm temperate regions with a dry climate was underestimated by 26%, and in the cool temperate region with a moist climate was overestimated by 25% (p < 0.05). Analysis showed that sustained application of organic fertilizers and straw return could be a beneficial measures to mitigate climate change and ensure food security in China. Our findings highlight the importance of deriving SOC stock change factors for a detailed classification of cropland by fertilizer management, climate, and soil types in order to more accurately reflect the effects of policy measures.  相似文献   
560.
Understanding the interactions between graphene nanomaterials(GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide(GO) and reduced graphene oxide(RGO) was examined with multi-walled carbon nanotubes(MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO RGO MWCNTs graphite. Upon normalization by surface area,graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory(DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different p H indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号