首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   1篇
  国内免费   9篇
安全科学   4篇
废物处理   24篇
环保管理   3篇
综合类   26篇
基础理论   22篇
环境理论   1篇
污染及防治   51篇
评价与监测   8篇
社会与环境   9篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   13篇
  2012年   13篇
  2011年   17篇
  2010年   3篇
  2009年   9篇
  2008年   11篇
  2007年   12篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   9篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1991年   2篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有148条查询结果,搜索用时 31 毫秒
11.
Decisions in ecological risk management for chemical substances must be made based on incomplete information due to uncertainties. To protect the ecosystems from the adverse effect of chemicals, a precautionary approach is often taken. The precautionary approach, which is based on conservative assumptions about the risks of chemical substances, can be applied selecting management models and data. This approach can lead to an adequate margin of safety for ecosystems by reducing exposure to harmful substances, either by reducing the use of target chemicals or putting in place strict water quality criteria. However, the reduction of chemical use or effluent concentrations typically entails a financial burden. The cost effectiveness of the precautionary approach may be small. Hence, we need to develop a formulaic methodology in chemical risk management that can sufficiently protect ecosystems in a cost-effective way, even when we do not have sufficient information for chemical management. Information-gap decision theory can provide the formulaic methodology. Information-gap decision theory determines which action is the most robust to uncertainty by guaranteeing an acceptable outcome under the largest degree of uncertainty without requiring information about the extent of parameter uncertainty at the outset. In this paper, we illustrate the application of information-gap decision theory to derive a framework for setting effluent limits of pollutants for point sources under uncertainty. Our application incorporates a cost for reduction in pollutant emission and a cost to wildlife species affected by the pollutant. Our framework enables us to settle upon actions to deal with severe uncertainty in ecological risk management of chemicals.  相似文献   
12.
End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection methods were suggested for equipment types that currently have no specific collection systems in Japan, particularly for video games, notebook computers, and mid-size ICT and audio/video equipment.  相似文献   
13.
A two-stage process for the chemical recycling of plastics is proposed. In this process, which consists of two reactors, plastics are converted into hydrogen and carbon. In the first reactor, plastic chips are thermally decomposed into hydrocarbons. In the second reactor, the hydrocarbons formed in the first reactor are catalytically decomposed into carbon and hydrogen. In this study, in order to obtain basic data for the second reactor, propene was catalytically decomposed in a laboratory-scale spouted-bed reactor (600mm high, 21.6mm internal diameter, made of SUS304). The effect of the type of spouting medium used on the decomposition behavior of propene was investigated using four types of spouting medium (nickel-plated -alumina, palladium-plated -alumina, nickel-impregnated -alumina, and -alumina). The nickel-impregnated -alumina gave the best propene conversion and hydrogen yield.  相似文献   
14.
Fueno H  Tanaka K  Sugawa S 《Chemosphere》2002,48(8):771-778
The dechlorination reaction pathways of 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin (OCDD) by the hydrogen atom are investigated by the density-functional theory B3PW91 method. The dechlorination reactions have large exothermicity and small activation energies. The activation energies (approximately 5 kcal/mol) of the sigma-complex formation due to the hydrogen addition are lower than those (approximately 9 kcal/mol) of the direct chlorine abstraction. It is suggested that the sigma-complex plays an important role in the reactions, although it has scarcely been shown in previous studies of the dechlorination of dioxins. The sigma-complex formation is favored at low temperatures and the chlorine abstraction is favored at high temperatures. Furthermore, it is found that the lateral positions have a marginal preference over the longitudinal positions. The dechlorination of OCDD by the hydrogen atom is thus not likely to result in a dominant formation of the laterally substituted toxic congeners.  相似文献   
15.
The Red Data Book of Japanese Vascular Plants is based on their risk of extinction. In order to construct the list, 2000 taxa were evaluated using population data and rates of decline for approximately 4400 grids, each of approximately 100 km(2). This database can be used to estimate the impact of human activity on a threatened plant's risk of extinction. In order to evaluate extinction risks and apply the evaluation to conservation actions, the discount mean time to extinction is defined as a measure of extinction risk, where the present value of a species' persistence in the future decreases exponentially. The rate of decrease has to be much less than the rate of economic discounting, in order to realize intergenerational sustainability. Increases of the inverse, and logarithm, of the discount mean time to extinction are considered measures of the extinction risk. We applied these measures to an environmental impact assessment for the Japanese World Exposition that is to be held in 2005. Development will have a greater impact on threatened Salvia species than it will on star magnolia, Magnolia tomentosa, which has been conserved by changing the site plan.  相似文献   
16.
17.
18.
19.
Summary The correlation between troop size (N) and home range area (R) is examined in terms of habitat quality with 32 data sets for the Japanese macaque (Macaca fuscata) from its entire distribution range. The habitat quality is represented by the vegetation type and the degree the habitat is disturbed. A proportional relationship is found between N and R when the two major vegetation types (deciduous and evergreen) are discriminated and only the data from relatively undisturbed habitats are considered. This result is discussed in relation to bioenergetics.  相似文献   
20.
Journal of Material Cycles and Waste Management - The demand for various modes of transportation has significantly increased around the world due to rapid urbanization, the increase in population,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号