首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22913篇
  免费   280篇
  国内免费   376篇
安全科学   615篇
废物处理   924篇
环保管理   2998篇
综合类   4285篇
基础理论   5708篇
环境理论   10篇
污染及防治   5661篇
评价与监测   1508篇
社会与环境   1687篇
灾害及防治   173篇
  2022年   240篇
  2021年   217篇
  2020年   164篇
  2019年   221篇
  2018年   323篇
  2017年   375篇
  2016年   511篇
  2015年   417篇
  2014年   592篇
  2013年   1953篇
  2012年   707篇
  2011年   955篇
  2010年   772篇
  2009年   863篇
  2008年   959篇
  2007年   1019篇
  2006年   882篇
  2005年   764篇
  2004年   739篇
  2003年   737篇
  2002年   658篇
  2001年   829篇
  2000年   610篇
  1999年   346篇
  1998年   274篇
  1997年   270篇
  1996年   308篇
  1995年   326篇
  1994年   290篇
  1993年   285篇
  1992年   286篇
  1991年   279篇
  1990年   273篇
  1989年   238篇
  1988年   212篇
  1987年   204篇
  1986年   194篇
  1985年   215篇
  1984年   217篇
  1983年   210篇
  1982年   207篇
  1981年   223篇
  1980年   195篇
  1979年   183篇
  1978年   139篇
  1977年   154篇
  1974年   138篇
  1973年   129篇
  1972年   156篇
  1970年   115篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Exposure of the temperate sea anemone Anemonia viridis Forskål to increased seawater temperature (from 16 to 26°C) reduced the lysosomal latency of coelenterate tissues. Lysosomes in the mesenterial filaments of anemones were destabilised by increased temperature, with greater destabilisation in heat-shocked symbiotic anemones than in heat-shocked aposymbiotic anemones in the early stages of the experiment. Lysosomal enzyme activity in zooxanthellae from heat-shocked symbiotic anemones was associated with the algal membranes and the cytoplasm of degenerate algal cells. While the relationship between host coelenterate and symbiotic alga may confer many benefits under normal conditions, comparison of the responses of symbiotic and aposymbiotic anemones to heat shock suggests that there may be disadvantages for symbiotic anemones under stress.  相似文献   
72.
Little is known about the concentrations, deposition rates, and effects of nitrogenous and sulfurous compounds in photochemical smog in the San Bernardino National Forest (SBNF) in southern California. Dry deposition of NO(3)(-) and NH(4)(+) to foliage of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) was correlated (R = 0.83-0.88) with historical average hourly O(3) concentations at 10 sites across an O(3) gradient in the SBNF. Mean deposition fluxes of NO(3)(-) to ponderosa and Jeffrey pine branches were 0.82 nmol M(-2)s(-1) at Camp Paivika (CP), a high-pollution site, and 0.19 nmol m(-2) s(-1) at Camp Osceola (CAO), a low-pollution site. Deposition fluxes of NH(4)(+) were 0.32 nmol m(-2) s(-1) at CP and 0.17 nmol m(-2) s(-1) at CAO, while mean values for SO(4)(2-) were 0.03 at CP and 0.02 nmol m(-2) s(-1) at CAO. Deposition fluxes to paper and nylon filters were higher in most cases than fluxes to pine branches at the same site. The results of this study suggest that an atmospheric concentration and deposition gradient of N and S compounds occurs along with the west-east O(3) gradient in the SBNF. Annual stand-level dry deposition rates for S and N at CP and CAO were estimated. Further studies are needed to determine if high N deposition loads in the SBNF significantly affect plant/soil nutrient relations, tree health, and the response of ponderosa pine to ozone.  相似文献   
73.
Deposition velocities have been determined for corn and soybeans in the first 4–6 weeks of growth in a full-scale study of canopy flow in a wind tunnel. Particles of 1, 5, 10 and 15 μm aerodynamic diameter made of sodium florescein were injected into the Environmental Wind Tunnel Facility at Colorado State University. Deposition velocities were determined as a function of free stream velocity (183, 305 and 610 cm/s) and approach flow turbulence intensity (~1% and 8%). Plants were arranged in realistic field configurations. Hot-wire anemometer studies confirmed that the fluid velocity profiles developed in the wind tunnel were similar to the flow realized in canopies in natural fields. An increase in velocity and turbulence intensity was found to decrease the deposition velocities. A minimum deposition velocity was observed at a particle diameter of 5 μm.  相似文献   
74.
75.
76.
Urban atmospheric environment contains many trace organic pollutants that are related to the incomplete fuel combustion in domestic heating, industrial plants and automobile traffic. Removal of these pollutants from the atmosphere takes place through wet and dry deposition as well as chemical transformations. In this study, concentrations of polycyclic aromatic hydrocarbons (PAHs) in wet deposition samples were determined at an urban site of Turkey. Wet and dry deposition samples were collected using Andersen Rain Sampler. The sampler was modified accordingly for the collection of organic pollutants. Collected samples were preconcentrated by using solid phase extraction (SPE) disks and consecutively analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Among the 13 compounds quantified in this study, anthracene, fluoranthene, and pyrene were found more frequently and at elevated concentrations (202, 271 and 260 ng L-1 mean concentrations, respectively).Concentrations of PAHs were found to be high in winter period.  相似文献   
77.
/ The risk tropospheric ozone poses to forests in the United States is dependent on the variation in ozone exposure across the distribution of the forests in question and the various environmental and climate factors predominant in the region. All these factors have a spatial nature, and consequently an approach to characterization of ozone risk is presented that places ozone exposure-response functions for species as seedlings and model-simulated tree and stand responses in a spatial context using a geographical information systems (GIS). The GIS is used to aggregate factors considered important in a risk characterization, including: (1) estimated ozone exposures over forested regions, (2) measures of ozone effects on species' and stand growth, and (3) spatially distributed environmental, genetic, and exposure influences on species' response to ozone. The GIS-based risk characterization provides an estimation of the extent and magnitude of the potential ozone impact on forests. A preliminary risk characterization demonstrating this approach considered only the eastern United States and only the limited empirical data quantifying the effect of ozone exposures on forest tree species as seedlings. The area-weighted response of the annual seedling biomass loss formed the basis for a sensitivity ranking: sensitive-aspen and black cherry (14%-33% biomass loss over 50% of their distribution); moderately sensitive-tulip popular, loblolly pine, eastern white pine, and sugar maple (5%-13% biomass loss); insensitive-Virginia pine and red maple (0%-1% loss). In the future, the GIS-based risk characterization will include process-based model simulations of the three- to 5-year growth response of individual species as large trees with relevant environmental interactions and model simulated response of mixed stands. The interactive nature of GIS provides a tool to explore consequences of the range of climate conditions across a species' distribution, forest management practices, changing ozone precursors, regulatory control strategies, and other factors influencing the spatial distribution of ozone over time as more information becomes available.KEY WORDS: Ecological risk assessment; GIS; Ozone; Risk characterization; Forests; Trees  相似文献   
78.
ABSTRACT: In most studies, quantile estimates of extreme 24-hour rainfall are given in annual probabilities. The probability of experiencing an excessive storm event, however, differs throughout the year. As a result, this paper explored the differences between heavy rainfall distributions by season in Louisiana. It was concluded by using the Kruskal-Wallis and Mann-Whitney tests that the distribution of heavy rainfall events differs significantly between particular seasons at the sites near the Gulf Coast. Furthermore, seasonal frequency curves varied dramatically at the four sites examined. Mixed distributions within these data were not found to be problematic, but the mechanisms that produced the events were found to change seasonally. Extreme heavy rainfall events in winter and spring were primarily generated by frontal weather systems, while summer and fall events had high proportions of events produced by tropical disturbances and airmass (free-convective) conditions.  相似文献   
79.
Municipal solid wastes generated each year contain potentially useful and recyclable materials for composites. Simultaneously, interest is high for the use of natural fibers, such as flax (Linum usitatissimum L.), in composites thus providing cost and environmental benefits. To investigate the utility of these materials, composites containing flax fibers with recycled high density polyethylene (HDPE) were created and compared with similar products made with wood pulp, glass, and carbon fibers. Flax was either enzyme- or dew-retted to observe composite property differences between diverse levels of enzyme formulations and retting techniques. Coupling agents would strengthen binding between fibers and HDPE but in this study fibers were not modified in anyway to observe mechanical property differences between natural fiber composites. Composites with flax fibers from various retting methods, i.e., dew- vs. enzyme-retting, behaved differently; dew-retted fiber composites resulted in both lower strength and percent elongation. The lowest level of enzyme-retting and the most economical process produces composites that do not appear to differ from the highest level of enzyme-retting. Flax fibers improved the modulus of elasticity over wood pulp and HDPE alone and were less dense than glass or carbon fiber composites. Likely, differences in surface properties of the various flax fibers, while poorly defined and requiring further research, caused various interactions with the resin that influenced composite properties.  相似文献   
80.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号