首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8647篇
  免费   136篇
  国内免费   236篇
安全科学   175篇
废物处理   424篇
环保管理   991篇
综合类   1419篇
基础理论   2116篇
污染及防治   2221篇
评价与监测   646篇
社会与环境   975篇
灾害及防治   52篇
  2023年   68篇
  2022年   147篇
  2021年   120篇
  2020年   75篇
  2019年   103篇
  2018年   181篇
  2017年   161篇
  2016年   228篇
  2015年   173篇
  2014年   267篇
  2013年   736篇
  2012年   298篇
  2011年   409篇
  2010年   324篇
  2009年   376篇
  2008年   429篇
  2007年   435篇
  2006年   342篇
  2005年   311篇
  2004年   328篇
  2003年   324篇
  2002年   278篇
  2001年   380篇
  2000年   237篇
  1999年   118篇
  1998年   90篇
  1997年   86篇
  1996年   109篇
  1995年   127篇
  1994年   99篇
  1993年   86篇
  1992年   90篇
  1991年   97篇
  1990年   79篇
  1989年   73篇
  1988年   72篇
  1987年   77篇
  1986年   53篇
  1985年   67篇
  1984年   66篇
  1983年   60篇
  1982年   59篇
  1981年   64篇
  1980年   48篇
  1979年   48篇
  1977年   38篇
  1976年   36篇
  1974年   35篇
  1973年   43篇
  1972年   51篇
排序方式: 共有9019条查询结果,搜索用时 0 毫秒
291.
Sources of metals in New York City wastewater   总被引:1,自引:0,他引:1  
  相似文献   
292.
293.
294.
In this paper, we report on techniques for sampling and measuring ethanol in both the gas and aqueous phases of the lower troposphere. In the gas phase, the best sampling conditions were ensured by adsorption on Hayesep Q with a Chromosorb W AW coated with LiCl dryer (method 1) or by cryogenic trapping (method 2). An intercomparison campaign showed good agreement between both methods under various conditions. Method 1 (adsorption on Hayesep Q with dryer) is easier to set up and to carry away from the laboratory. Method 2 (cryogenic trapping) requires longer sampling time (up to 60 min while method 1 requires only 10-15 min). Method 1 is adapted to high concentrations of ethanol (>20 ppb) and low relative humidity (<30%). Method 2 gives more accurate results than method 1 for low ethanol concentrations (1-20 ppb). Comparing these results to previous studies, it is clear that sampling with appropriate solid adsorbents or with stainless steel canisters (with appropriate humidified air and short storage time) is adapted to urban or industrial environments where ethanol concentrations are high. Cryogenic sampling must be preferred for remote places where ethanol concentrations are low. Three techniques were tested for sampling ethanol in the liquid phase, namely solid phase microextraction, purge and trap injection, and direct injection. Among those, the latter was chosen for field measurements of ethanol in rain samples at an urban location. These first ever results at an urban location show concentrations ranging from <1 to 5 microM in rains, which agree with the expected range of concentrations. However, the purge and trap method showed detection limits that were 50 times lower and should be preferred for liquid phase ethanol measurements in rural and remote locations. Combining cryogenic trapping for the gas phase (method 2) and direct injection for the liquid phase is convenient and well adapted for a multiphase study of ethanol in the atmosphere, where simultaneous measurements in both phases are needed.  相似文献   
295.
Yang Y  Tao S  Wong PK  Hu JY  Guo M  Cao HY  Coveney RM  Zuo Q  Li BG  Liu WX  Cao J  Xu FL 《Chemosphere》2005,60(6):753-761
The dynamic exposures to HCHs of individuals born between the years 1913 and 1993 in Tianjin have been simulated by connecting a fugacity model (IV) with a multimedia exposure model. Ingestion is the most important pathway for human beings to take up HCHs, and concentrations in the human body correlate with body weight changes. Accumulations of HCHs were derived assuming that the degradation in human body behaved linearly. The health risk of exposure to HCHs was measured using cancer risk and loss of life expectancy (LLE), and LLE was modified from its original definition to incorporate a dynamic calculation that takes variances in exposure into account. Monte-Carlo simulations were run to analyze the uncertainties of the model.  相似文献   
296.
Spheroidal carbonaceous particles (SCPs) provide an unambiguous indication of atmospherically deposited contamination from industrial sources. SCP data from a 12 year annual sediment trapping and coring programme at 14 lakes based on the UK Acid Waters Monitoring Network, were used to consider temporal trends in deposition and to compare these with measured non-marine sulphate fluxes. Results show good temporal coherence across a broad area of northern UK and that SCP deposition levels and are now at their lowest since the 1940s, in agreement with modelled sulphate data. SCP fluxes show reasonable linearity with measured non-marine sulphate depositional fluxes from the nearest UK Acid Deposition Monitoring Network sites, especially over the post-flue-gas desulphurisation period, but comparisons prior to 1972 are not possible due to lack of data. We speculate on whether palaeolimnological SCP data might be used to reconstruct the history of non-marine sulphate fluxes from industrial sources.  相似文献   
297.
Lau TK  Chu W  Graham N 《Chemosphere》2005,60(8):1045-1053
The direct photolysis of an important endocrine disruptor compound, di-n-butyl phthalate (DBP), has been investigated under monochromatic UV irradiation at 254 nm over a wide pH range (3-11). The investigation was carried out under idealized conditions and has considered both reaction kinetics and the degradation mechanism. It was found that more than 90% of DBP can be degraded within an hour of irradiation in water. A simple model has been developed and used to predict the initial DBP photolysis rate constant at different pH values and initial DBP concentrations. The major decomposition mechanism of DBP is believed to involve the hydrolytic photolysis of the carbon in the alpha and/or beta-position of the ester chain with the production of aromatic carboxylic derivatives. Additionally, multi-degradation pathways are proposed for acid-catalyzed hydrolytic photolysis (pH 3-5), which was found to be useful in explaining the photo-degradation of DBP under acidic conditions. The use of 254 nm UV to photo-degrade DBP was found to be a relatively fast and clean process, especially in neutral to basic conditions.  相似文献   
298.
Four water samples collected using standard depth and width water-column sampling methodology were compared to an innovative passive, in situ, sampler (the polar organic chemical integrative sampler or POCIS) for the detection of 96 organic wastewater-related contaminants (OWCs) in a stream that receives agricultural, municipal, and industrial wastewaters. Thirty-two OWCs were identified in POCIS extracts whereas 9-24 were identified in individual water-column samples demonstrating the utility of POCIS for identifying contaminants whose occurrence are transient or whose concentrations are below routine analytical detection limits. Overall, 10 OWCs were identified exclusively in the POCIS extracts and only six solely identified in the water-column samples, however, repetitive water samples taken using the standard method during the POCIS deployment period required multiple trips to the sampling site and an increased number of samples to store, process, and analyze. Due to the greater number of OWCs detected in the POCIS extracts as compared to individual water-column samples, the ease of performing a single deployment as compared to collecting and processing multiple water samples, the greater mass of chemical residues sequestered, and the ability to detect chemicals which dissipate quickly, the passive sampling technique offers an efficient and effective alternative for detecting OWCs in our waterways for wastewater contaminants.  相似文献   
299.
Fukami N  Yosida M  Lee BD  Taku K  Hosomi M 《Chemosphere》2001,42(4):345-350
Batch photocatalytic degradation of 1000-ppm gaseous perchloroethylene (PCE) was conducted with UV irradiation such that nearly 100% was decomposed within 10 min. The main intermediate and final product were identified as trichloroacetylchloride (TCAC) and hydrogen chloride (HCl), respectively, and minor ones as dichloroacetic acid (DCAC), monochloroacetic acid (MCAC), carbon tetrachloride, chloroform, and phosgene. More than 90% of Cl- equivalent, i.e., the sum of the chlorine number in PCE, intermediates, and HCl, was compensated for during the time of PCE degradation; a result indicating that no other major chlorinated intermediates are present during the time of PCE degradation. In a similar experiment, 500 ppm of gaseous TCAC degraded into HCl within 3 h without producing DCAC or MCAC, where like PCE, more than 90% of Cl- equivalent, i.e., the sum of the chlorine number in TCAC and HCl, was compensated for during time of TCAC degradation. Accordingly, gaseous PCE is concluded to predominantly follow a degradation pathway of PCE --> TCAC --> HCl.  相似文献   
300.
Developing a multimedia model of chemical dynamics in an urban area.   总被引:6,自引:0,他引:6  
M L Diamond  D A Priemer  N L Law 《Chemosphere》2001,44(7):1655-1667
A multimedia model has been developed to account for the movement of semi-volatile organic compounds (SOCs) in an urban environment. The model, based on a Level III fugacity model of D. Mackay (Multimedia Environmental Models: The Fugacity Approach, Lewis Publishers, Boca Raton, FL, 1991), consists of six compartments: air, surface water, sediment, soil, vegetation, and an organic film that coats impervious surfaces. The latter is a newly identified compartment into which gas-phase SOCs partition and particle-phase SOCs are believed to be efficiently captured (M.L. Diamond, S.E. Gingrich, K. Fertuck, B.E. McCarry, G.A. Stern, B. Billeck, B. Grift, D. Brooker, T.D. Yager, Environ. Sci. Technol., 34 (2000a), 2900-2908). The model, parameterized for downtown Toronto, Ontario, Canada, and run with an illustrative emission rate for selected polycyclic aromatic hydrocarbons and homologues of polychlorinated dibenzodioxins, indicates that the film achieves the highest concentrations among media but that soils are the greatest sink for all but the least hydrophobic chemicals. The film "reflects" the more volatile chemicals into air, facilitates removal to surface waters by wash-off, and provides a surface on which photolytic degradation can occur. As such, the film is a transient sink that increases chemical mobility in urban areas by increasing air concentrations and the cycling of these compounds between air and urban surfaces and increasing water concentrations. Vegetation also accumulates SOCs, a portion of which is transferred to soil that reduces chemical mobility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号