首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   20篇
  国内免费   1篇
安全科学   6篇
废物处理   2篇
环保管理   42篇
综合类   30篇
基础理论   77篇
环境理论   2篇
污染及防治   40篇
评价与监测   9篇
社会与环境   11篇
灾害及防治   4篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   5篇
  2020年   6篇
  2019年   10篇
  2018年   6篇
  2017年   10篇
  2016年   15篇
  2015年   13篇
  2014年   11篇
  2013年   16篇
  2012年   13篇
  2011年   17篇
  2010年   9篇
  2009年   12篇
  2008年   11篇
  2007年   14篇
  2006年   13篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1995年   1篇
  1994年   2篇
  1987年   1篇
  1985年   2篇
  1981年   1篇
  1964年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
71.
72.
The tendency for more closely related species to share similar traits and ecological strategies can be explained by their longer shared evolutionary histories and represents phylogenetic conservatism. How strongly species traits co-vary with phylogeny can significantly impact how we analyze cross-species data and can influence our interpretation of assembly rules in the rapidly expanding field of community phylogenetics. Phylogenetic conservatism is typically quantified by analyzing the distribution of species values on the phylogenetic tree that connects them. Many phylogenetic approaches, however, assume a completely sampled phylogeny: while we have good estimates of deeper phylogenetic relationships for many species-rich groups, such as birds and flowering plants, we often lack information on more recent interspecific relationships (i.e., within a genus). A common solution has been to represent these relationships as polytomies on trees using taxonomy as a guide. Here we show that such trees can dramatically inflate estimates of phylogenetic conservatism quantified using S. P. Blomberg et al.'s K statistic. Using simulations, we show that even randomly generated traits can appear to be phylogenetically conserved on poorly resolved trees. We provide a simple rarefaction-based solution that can reliably retrieve unbiased estimates of K, and we illustrate our method using data on first flowering times from Thoreau's woods (Concord, Massachusetts, USA).  相似文献   
73.
While it is well established that stomata close during moisture stress, strong correlations among environmental (e.g., vapor pressure deficit, soil moisture, air temperature, radiation) and internal (e.g., leaf water potential, sap flow, root-shoot signaling) variables obscure the identification of causal mechanisms from field experiments. Models of stomatal control fitted to field data therefore suffer from ambiguous parameter identification, with multiple acceptable (i.e., nearly optimal) model structures emphasizing different moisture status indicators and different processes. In an effort to minimize these correlations and improve parameter and process identification, we conducted an irrigation experiment on red maples (Acer rubrum L.) at Harvard Forest (summers of 2005 and 2006). Control and irrigated trees experienced similar radiative and boundary layer forcings, but different soil moisture status, and thus presumably different diurnal cycles of internal leaf water potential. Measured soil moisture and atmospheric forcing were used to drive a transient tree hydraulic model that incorporated a Jarvis-type leaf conductance in a Penman–Monteith framework with a Cowan-type (resistance and capacitance) tree hydraulic representation. The leaf conductance model included dependence on both leaf matric potential, ΨL (so-called feedback control) and on vapor pressure deficit, D (so-called feedforward control). Model parameters were estimated by minimizing the error between predicted and measured sap flow. The whole-tree irrigation treatment had the effect of elevating measured transpiration during summer dry-downs, demonstrating the limiting effect that subsurface resistance may have on transpiration during these times of moisture stress. From the best fitted model, we infer that during dry downs, moisture stress manifests itself in an increase of soil resistance with a resulting decrease in ΨL, leading to both feedforward and feedback controls in the control trees, but only feedforward control for the irrigated set. Increases in the sum-of-squares error when individual model components were disabled allow us to reject the following three null hypotheses: (1) the f(D) stress is statistically insignificant (p = 0.01); (2) the f(ΨL) stress is statistically insignificant (p = 0.07); and (3) plant storage capacitance is independent of moisture status (p = 0.07).  相似文献   
74.
In this research work, the rheological properties of Wood-Plastic Composites (WPC) with some selected compositions are investigated. WPC is being recognized as a green composite that, in the past 20?years, has emerged to a commercial product. A study on rheological properties of these materials can give insight into the proper selection of composition and processing condition. Two grades of polypropylene (PP) with two different melt flow indexes (MFI) were selected to prepare WPCs with three different wood contents (50, 60 and 70?% wt.). Four types of rheological experiments were performed utilizing a rotational plate rheometer: (1) strain sweep, (2) frequency sweep, (3) temperature sweep and (4) steady shear rate sweep. The independent variables were chosen as wood content, MFI of polymer (two types), melt temperature, frequency or shear rate, the gap between the plates, and strain percentage. The strain sweep tests specified the linear and non-linear viscoelastic zones of each experiment. The results of frequency sweep experiments indicated that increasing the wood content and frequency and also decreasing the strain percentage and the gap distance, lead to an increase in the storage modulus. Regarding the loss modulus, wood percentage and the gap distance presented positive effects and strain percentage showed a negative effect. The behavior of complex viscosity was almost similar to that of the storage modulus but increasing the frequency caused a decrease in the complex viscosity. In case of temperature sweep experiments, it was observed that the rheological properties exhibit a rapid change near to a temperature of 160?°C. The results also showed that beyond this point, increasing the wood content and also MFI of polypropylene caused an increase in the storage modulus. The results of steady shear rate sweep experiments specified that increasing wood content and also decreasing the MFI of PP, the gap distance and shear rate lead to an increase in both viscosity and shear stress.  相似文献   
75.
76.
Global and continental scale flood forecast provide coarse resolution flood forecast, but from the perspective of emergency management, flood warnings should be detailed and specific to local conditions. The desired refinement can be provided by the use of downscaling global scale models and through the use of distributed hydrologic models to produce a high‐resolution flood forecast. Three major challenges associated with transforming global flood forecasting to a local scale are addressed in this work. The first is using open‐source software tools to provide access to multiple data sources and lowering the barriers for users in management agencies at local level. This can be done through the Tethys Platform that enables web water resources modeling applications. The second is finding a practical solution for the computational requirements associated with running complex models and performing multiple simulations. This is done using Tethys Cluster that manages distributed and cloud computing resources as a companion to the Tethys Platform for web app development. The third challenge is discovering ways to downscale the forecasts from the global extent to the local context. Three modeling strategies have been tested to address this, including downscaling of coarse resolution global runoff models to high‐resolution stream networks and routing with Routing Application for Parallel computatIon of Discharge (RAPID), the use of hierarchical Gridded Surface and Subsurface Hydrologic Analysis (GSSHA) distributed models, and pre‐computed distributed GSSHA models.  相似文献   
77.
The current and projected impacts of climate change make understanding the environmental and social vulnerability of coastal communities and the planning of adaptations important international goals and national policy initiatives. Yet, coastal communities are concurrently experiencing numerous other social, political, economic, demographic and environmental changes or stressors that also need to be considered and planned for simultaneously to maintain social and environmental sustainability. There are a number of methods and processes that have been used to study vulnerability and identify adaptive response strategies. This paper describes the stages, methods and results of a modified community-based scenario planning process that was used for vulnerability analysis and adaptation planning within the context of multiple interacting stressors in two coastal fishing communities in Thailand. The four stages of community-based scenario planning included: (1) identifying the problem and purpose of scenario planning; (2) exploring the system and types of change; (3) generating possible future scenarios; and (4) proposing and prioritizing adaptations. Results revealed local perspectives on social and environmental change, participant visions for their local community and the environment, and potential actions that will help communities to adapt to the changes that are occurring. Community-based scenario planning proved to have significant potential as an anticipatory action research process for incorporating multiple stressors into vulnerability analysis and adaptation planning. This paper reflects on the process and outcomes to provide insights and suggest changes for future applications of community-based scenario planning that will lead to more effective learning, innovation and action in communities and related social–ecological systems.  相似文献   
78.
At the nexus of watersheds, land, coastal areas, oceans, and human settlements, river delta regions pose specific challenges to environmental governance and sustainability. Using the Amazon Estuary-Delta region (AD) as our focus, we reflect on the challenges created by the high degree of functional interdependencies shaping social–ecological dynamics of delta regions. The article introduces the initial design of a conceptual framework to analyze delta regions as coupled social–ecological systems (SES). The first part of the framework is used to define a delta SES according to a problem and/or collective action dilemma. Five components can be used to define a delta SES: social–economic systems, governance systems, ecosystems-resource systems, topographic-hydrological systems, and oceanic-climate systems. These components are used in association with six types of telecoupling conditions: socio-demographic, economic, governance, ecological, material, and climatic-hydrological. The second part of the framework presents a strategy for the analysis of collective action problems in delta regions, from sub-delta/local to delta to basin levels. This framework is intended to support both case studies and comparative analysis. The article provides illustrative applications of the framework to the AD. First, we apply the framework to define and characterize the AD as coupled SES. We then utilize the framework to diagnose an example of collective action problem related to the impacts of urban growth, and urban and industrial pollution on small-scale fishing resources. We argue that the functional interdependencies characteristic of delta regions require new approaches to understand, diagnose, and evaluate the current and future impacts of social–ecological changes and potential solutions to the sustainability dilemmas of delta regions.  相似文献   
79.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   
80.
Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks to regional population persistence of declining populations, we simulated source–sink dynamics for 3 very different endangered species: Black‐capped Vireos (Vireo atricapilla) at Fort Hood, Texas, Ord's kangaroo rats (Dipodomys ordii) in Alberta, and Northern Spotted Owls (Strix occidentalis caurina) in the northwestern United States. We used empirical data from these case studies to parameterize spatially explicit individual‐based models. We then used the models to quantify population abundance and persistence with and without long‐term sinks. The contributions of sink habitats varied widely. Sinks were detrimental, particularly when they functioned as strong sinks with few emigrants in declining populations (e.g., Alberta's Ord's kangaroo rat) and benign in robust populations (e.g., Black‐capped Vireos) when Brown‐headed Cowbird (Molothrus ater) parasitism was controlled. Sinks, including ecological traps, were also crucial in delaying declines when there were few sources (e.g., in Black‐capped Vireo populations with no Cowbird control). Sink contributions were also nuanced. For example, sinks that supported large, variable populations were subject to greater extinction risk (e.g., Northern Spotted Owls). In each of our case studies, new context‐dependent sinks emerged, underscoring the dynamic nature of sources and sinks and the need for frequent re‐assessment. Our results imply that management actions based on assumptions that sink habitats are generally harmful or helpful risk undermining conservation efforts for declining populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号