首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   10篇
  国内免费   2篇
安全科学   24篇
废物处理   20篇
环保管理   64篇
综合类   57篇
基础理论   64篇
环境理论   4篇
污染及防治   83篇
评价与监测   24篇
社会与环境   22篇
灾害及防治   6篇
  2023年   2篇
  2022年   8篇
  2021年   7篇
  2020年   5篇
  2019年   11篇
  2018年   7篇
  2017年   17篇
  2016年   15篇
  2015年   10篇
  2014年   12篇
  2013年   27篇
  2012年   16篇
  2011年   15篇
  2010年   15篇
  2009年   22篇
  2008年   15篇
  2007年   22篇
  2006年   13篇
  2005年   18篇
  2004年   12篇
  2003年   20篇
  2002年   13篇
  2001年   4篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1954年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
131.
132.
ABSTRACT: A streamflow duration curve illustrates the relationship between the frequency and magnitude of streamflow. Flow duration curves have a long history in the field of water-resource engineering and have been used to solve problems in water-quality management, hydropower, instream flow methodologies, water-use planning, flood control, and river and reservoir sedimentation, and for scientific comparisons of streamflow characteristics across watersheds. This paper reviews traditional applications and provides extensions to some new applications, including water allocation, wasteload allocation, river and wetland inundation mapping, and the economic selection of a water-resource project.  相似文献   
133.
The Arctic marine ecosystem is shaped by the seasonality of the solar cycle, spanning from 24-h light at the sea surface in summer to 24-h darkness in winter. The amount of light available for under-ice ecosystems is the result of different physical and biological processes that affect its path through atmosphere, snow, sea ice and water. In this article, we review the present state of knowledge of the abiotic (clouds, sea ice, snow, suspended matter) and biotic (sea ice algae and phytoplankton) controls on the underwater light field. We focus on how the available light affects the seasonal cycle of primary production (sympagic and pelagic) and discuss the sensitivity of ecosystems to changes in the light field based on model simulations. Lastly, we discuss predicted future changes in under-ice light as a consequence of climate change and their potential ecological implications, with the aim of providing a guide for future research.  相似文献   
134.
The negative effects of elevated concentrations of inorganic aluminium on aquatic organisms are well documented. Acid deposition is often cited as a main driver behind the mobilisation and speciation of aluminium in soils and surface waters. In the study, we tested the hypothesis that sulphur deposition is the main driver for elevated concentrations of inorganic aluminium in 114 base poor, boreal Swedish streams. However, the deposition of anthropogenic sulphate has decreased substantially since it peaked in the 1970s, and at the current deposition levels, we hypothesise that local site parameters play an important role in determining vulnerability to elevated concentrations of inorganic aluminium in boreal stream waters. Presented here are the results of a principal components analysis of stream water chemistry, acid deposition data and local site variables, including forest composition and stem volume. It is shown that the concentrations of both organic and inorganic aluminium are not explained by either historical or current acid deposition, but are instead explained by a combination of local site characteristics. Sites with elevated concentrations of inorganic aluminium were characterised by small catchments (<500 ha) dominated by mature stands of Norway spruce with high stem volume. Using data from the Swedish National Forest Inventory the area of productive forest land in Sweden with a higher vulnerability for elevated inorganic aluminium concentrations in forests streams is approximately 1.5 million hectares or 7% of the total productive forest area; this is higher in the south of Sweden (10%) and lower in the north (2%). A better understanding of the effects of natural processes and forest management in controlling aquatic inorganic aluminium concentrations is therefore important in future discussions about measures against surface water acidification.  相似文献   
135.
Produced water, discharged from offshore oil and gas operations, contains chemicals from formation water, condensed water, and any chemical added down hole or during the oil/water separation process. Although, most of the contaminants fall below the detection limits within a short distance from the discharge port, a few of the remaining contaminants including naturally occurring radioactive materials (NORM) are of concern due to their bioavailability in the media and bioaccumulation characteristics in finfish and shellfish species used for human consumption. In the past, several initiatives have been taken to model human health risk from NORM in produced water. The parameters of the available risk assessment models are imprecise and sparse in nature. In this study, a fuzzy possibilistic evaluation using fuzzy rule based modeling has been presented. Being conservative in nature, the possibilistic approach considers possible input parameter values; thus provides better environmental prediction than the Monte Carlo (MC) calculation. The uncertainties of the input parameters were captured with fuzzy triangular membership functions (TFNs). Fuzzy if-then rules were applied for input concentrations of two isotopes of radium, namely (226)Ra, and (228)Ra, available in produced water and bulk dilution to evaluate the radium concentration in fish tissue used for human consumption. The bulk dilution was predicted using four input parameters: produced water discharge rate, ambient seawater velocity, depth of discharge port and density gradient. The evaluated cancer risk shows compliance with the regulatory guidelines; thus minimum risk to human health is expected from NORM components in produced water.  相似文献   
136.
The presence of nitrogenous organic compounds in raw water sources for municipal supplies is of environmental concern because many of them exert significant chlorine demand, while some produce complex stable mutagenic products upon chlorination or are precursors to haloform formation. Seven N-organic compounds have been identified in municipal water concentrates (adenine, 5-chlorouracil, cytosine, guanine, purine, thymine, and uracil) at concentrations ranging from 20 to 860 μg/L. Eight compounds (adenine, cytosine, purine, pyrrole, thymine, tryptophan, tyrosine, and uracil) have been found in filtrates from cultures of either Anabaena flos aquae or Oscillatoria tenuis. Calculated CHCl3 levels which might have formed at pH 7 in the water supplies were well below the maximum contaminant level (MCL) of 0.1 mg/L proposed by the U.S. Environmental Protection Agency (USEPA) for total trihalogenated methanes. Calculated levels of CHCl3 which might have been formed under more alkaline conditions, however, were more than 10% of the MCL and were therefore significant. Calculated levels of combined forms of chlorine yielding falsely positive tests for free chlorine in some samples were slightly less or exceeded the 0.5 mg/L free chlorine residual generally taken as an acceptable level of disinfection. The demonstration of a parallel increase in organic nitrogen content with population density in two laboratory grown blue-green algal cultures, and the finding of elevated organic nitrogen values in a water supply sample collected during the occurrence of a blue-green algal bloom, suggested that summer algal bloom occurrence can add considerably to the organic nitrogen content and the trihalomethane potential of water supplies.  相似文献   
137.
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s–1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m–1 at 3.0 g m–3 to 30 s m–1 at 30 g m–3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed.  相似文献   
138.
Spheroidal carbonaceous particles (SCP) and polycyclicaromatic hydrocarbons (PAH) have been measured in the dated sediment cores of 10 remote lakes distributed across Europe. The geographic trends were evaluated by examination of the superficial sediment fluxes and total sediment inventories. The highest levels of both markers were observed in the Eastern European lakes whereas the minimal values corresponded to the lake located in the Arctic. However, this SCP-PAH correlation was not observed after exclusion of the end member lakes from the series. The temporal trends of both pollutant markers are consistent with the history of pyrolytic emissions over Europe. However, the downcore SCP distributions are shorter than the PAH profiles in nearly all lakes. The differences are probably related to the different size particle fractions involved in the measurement of each marker, >5 and >1 m for SCP and PAH, respectively. Thus, the two proxies probably reflect pollution inputs from closer (SCP) and more distant sites (PAH).  相似文献   
139.
The growing complexity and global nature of wildlife poaching threaten the survival of many species worldwide and are outpacing conservation efforts. Here, we reviewed proximal and distal factors, both social and ecological, driving illegal killing or poaching of large carnivores at sites where it can potentially occur. Through this review, we developed a conceptual social–ecological system framework that ties together many of the factors influencing large carnivore poaching. Unlike most conservation action models, an important attribute of our framework is the integration of multiple factors related to both human motivations and animal vulnerability into feedbacks. We apply our framework to two case studies, tigers in Laos and wolverines in northern Sweden, to demonstrate its utility in disentangling some of the complex features of carnivore poaching that may have hindered effective responses to the current poaching crisis. Our framework offers a common platform to help guide future research on wildlife poaching feedbacks, which has hitherto been lacking, in order to effectively inform policy making and enforcement.  相似文献   
140.
The Sierra Nevada produces over 50 percent of California's water. Improvement of water yields from the Sierra Nevada through watershed management has long been suggested as a means of augmenting the state's water supply. Vegetation and snowpack management can increase runoff from small watersheds by reducing losses due to evapotranspiration, snow interception by canopy, and snow evaporation. Small clearcuts or group selection cuts creating openings less than half a hectare, with the narrow dimension from south to north, appear to be ideal for both increasing and delaying water delivery in the red fir-lodgepole pine and mixed-conifer types of the Sierra west slope. Such openings can have up to 40 percent more snow-water equivalent than does uncut forest. However, the water yield increase drops to 1/2-2 percent of current yield for an entire management unit, due to the small number of openings that can be cut at one time, physical and management constraints, and multiple use/sustained yield guidelines. As a rough forecast, water production from National Forest land in the Sierra Nevada can probably be increased by about 1 percent (0.6 cm) under intensive forest watershed management. Given the state of reservoir storage and water use in California, delaying streamflow is perhaps the greatest contribution watershed management can make to meeting future water demands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号