全文获取类型
收费全文 | 30967篇 |
免费 | 344篇 |
国内免费 | 363篇 |
专业分类
安全科学 | 952篇 |
废物处理 | 1442篇 |
环保管理 | 3802篇 |
综合类 | 5356篇 |
基础理论 | 8049篇 |
环境理论 | 18篇 |
污染及防治 | 8031篇 |
评价与监测 | 2071篇 |
社会与环境 | 1773篇 |
灾害及防治 | 180篇 |
出版年
2023年 | 174篇 |
2022年 | 326篇 |
2021年 | 355篇 |
2020年 | 289篇 |
2019年 | 353篇 |
2018年 | 478篇 |
2017年 | 481篇 |
2016年 | 759篇 |
2015年 | 592篇 |
2014年 | 895篇 |
2013年 | 2428篇 |
2012年 | 1076篇 |
2011年 | 1458篇 |
2010年 | 1175篇 |
2009年 | 1206篇 |
2008年 | 1443篇 |
2007年 | 1494篇 |
2006年 | 1270篇 |
2005年 | 1106篇 |
2004年 | 993篇 |
2003年 | 1079篇 |
2002年 | 955篇 |
2001年 | 1244篇 |
2000年 | 871篇 |
1999年 | 525篇 |
1998年 | 354篇 |
1997年 | 362篇 |
1996年 | 364篇 |
1995年 | 427篇 |
1994年 | 451篇 |
1993年 | 354篇 |
1992年 | 376篇 |
1991年 | 358篇 |
1990年 | 390篇 |
1989年 | 341篇 |
1988年 | 296篇 |
1987年 | 280篇 |
1986年 | 223篇 |
1985年 | 248篇 |
1984年 | 265篇 |
1983年 | 256篇 |
1982年 | 241篇 |
1981年 | 222篇 |
1980年 | 175篇 |
1979年 | 194篇 |
1978年 | 176篇 |
1975年 | 140篇 |
1974年 | 117篇 |
1972年 | 130篇 |
1971年 | 131篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
221.
S. L. Holmberg T. Claesson M. Abul-Milh B. -M. Steenari 《Resources, Conservation and Recycling》2003,38(4):3071
At the district heating plant of Kalmar, Sweden an on-line unit for production of granulated wood ash for nutrient recycling on forest soils is being applied. Currently, the granules are dried by hot air from an oil-fired burner. The objective of this work was to investigate how drying by flue gas affects the hardening of granules, or impacts their chemical composition and properties. Ninety-six granule samples were treated by flue gas from natural gas combustion in a laboratory pilot scale flue gas generator. CO2, CO, O2, C3H8 and NO concentrations were varied during the experiment. Additionally, some samples were treated by flue gas from combustion of sawdust at the heating plant in Kalmar. Drying by flue gases did not affect the chemical composition of granules, but minor effects were seen in their mineralogy. The carbonate content was slightly higher in granules treated with flue gas from natural gas combustion compared to the granules dried by hot air only, when measured by wet chemical methods. Results from XRD analysis imply that the calcite content is higher and the portlandite and arcanite content slightly less in granules treated with flue gas from sawdust combustion compared to the granules dried by hot air only. The results from this investigation showed no negative effects on ash granule composition or physical structure by the use of a flue as a drying medium. 相似文献
222.
Major and trace elements of selected pedons in the USA 总被引:6,自引:0,他引:6
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively. 相似文献
223.
Lin CH Lerch RN Garrett HE Johnson WG Jordan D George MF 《Journal of environmental quality》2003,32(6):1992-2000
A field lysimeter study with bare ground and five different ground covers was established to evaluate the effect of forage grasses on the fate and transport of two herbicides in leachate. The herbicides were atrazine (ATR; 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) and isoxaflutole [IXF; 5-cyclopropyl-4-(2-methylsulfonyl-4-trifluormethyl-benzoyl)isoxazole], which has the commercial name Balance (Aventis Crop Science, Strasbourg, France). The ground covers included orchardgrass (Dactylis glomerata L.), smooth bromegrass (Bromus inermis Leyss.), tall fescue (Festuca arundinacea Schreb.), timothy (Phleum pratense L.), and switchgrass (Panicum virgatum L.). The results suggested that the total IXF (parent + metabolites) showed higher mobility than ATR and its metabolites. Differences in the timing of transport reflected the rapid degradation of IXF to the more soluble, stable, and biologically active diketonitrile (DKN) metabolite in the system. Although grass treatments did not promote the hydrolysis of DKN, they significantly reduced its transport in the leachate through enhanced evapotranspiration. Grass treatments significantly enhanced ATR degradation in the leachates and soils, especially through N dealkylation, but they did not reduce total ATR transported in the leachate. Leachate from the orchardgrass lysimeters contained the highest proportion of ATR metabolites (64.2%). Timothy and smooth bromegrass treatments also displayed a significant increase in ATR metabolites in leachate. Grass-treated lysimeters showed higher microbial biomass carbon than bare ground. For ATR treatments, the proportion of metabolites in the leachate strongly correlated with the elevated soil microbial biomass carbon in forage treatments. In contrast, DKN degradation was poorly correlated with soil microbial biomass carbon, suggesting that DKN degradation is an abiotic process. 相似文献
224.
In pond and wetland systems for wastewater treatment, plants are often thought to enhance the removal of ammonium and nitrogen through the activities of root-associated bacteria. In this study, we examined the role of plant roots in an aerated pond system with floating plants designed to treat high-strength septage wastewater. We performed both laboratory and full-scale experiments to test the effect of different plant root to septage ratios on nitrification and denitrification, and measured the abundances of nitrifying bacteria associated with roots and septage particulates. Root-associated nitrifying bacteria did not play a significant role in ammonium and total nitrogen removal. Investigations of nitrifier populations showed that only 10% were associated with water hyacinth [Eichhornia crassipes (Mart.) Solms] roots (at standard facility plant densities equivalent to 2.2 wet g roots L(-1) septage); instead, nitrifiers were found almost entirely (90%) associated with suspended septage particulates. The role of root-associated nitrifiers in nitrification was examined in laboratory batch experiments where high plant root concentrations (7.4 wet g L(-1), representing a 38% net increase in total nitrifier populations over plant-free controls) yielded a corresponding increase (55%) in the non-substrate-limited nitrification rate (V(max)). However, within the full-scale septage-treating pond system, nitrification and denitrification rates remained unchanged when plant root concentrations were increased to 7.1 g roots L(-1) (achieved by increasing the surface area available for plants while maintaining the same tank volume). Under normal facility operating conditions, nitrification was limited by ammonium concentration, not nitrifier availability. Maximizing plant root concentrations was found to be an inefficient mechanism for increasing nitrification in organic particulate-rich wastewaters such as septage. 相似文献
225.
Smith MC Shaw DR Massey JH Boyette M Kingery W 《Journal of environmental quality》2003,32(4):1393-1404
Nonequilibrium disc-flow techniques may better reproduce dynamic soil-pesticide interactions than traditional batch sorption studies. Batch kinetic and equilibrium experiments and dual-label thin-disc flow experiments were conducted with atrazine (6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine) and imazaquin [2-(4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl)-3-quinolinecarboxylic acid] using a Demopolis silt loam (loamy-skeletal, carbonatic, thermic, shallow Typic Udorthent; 8% clay, 62 g kg(-1) organic matter, 7.6 pH). Batch kinetic studies with both herbicides revealed an almost instantaneous rapid phase and a much slower gradual phase. The rapid phase was complete after 5 min and equilibrium was reached at 24 h. The rapid phase accounted for 74% and 12 to 30% of the total amounts adsorbed for atrazine and imazaquin, respectively. The sorption of both the rapid and 24-h isotherms for each herbicide best fit the Freundlich equation. The rapid and 24-h K(f) values of atrazine were 1.38 and 2.41, respectively, and the N value of both phases was approximately 0.93. For imazaquin, the rapid and 24-h K(f) values were 0.056 and 035, respectively, and the N value for the rapid phase of imazaquin was 0.71, compared with 0.86 for the 24-h isotherm. In the dual-label thin-disc flow experiments, the average partition coefficient for atrazine at the peak soil concentration point was 1.54. This value closely agreed with the observed rapid-phase K(f) value of 1.38. In contrast, the thin-disc flow experiments failed to detect any imazaquin retention. The thin-disc flow method can allow for a greater resolution of rapid sorption kinetics, which is impractical with batch studies. Along with dynamic partitioning data, the thin-disc flow method may provide kinetics data that may better complement environmental models than coefficients generated with batch techniques. 相似文献
226.
The pi?on (Pinus edulis Engelm.)-juniper [Juniperus monosperma (Engelm.) Sarg.] woodlands of Bandelier National Monument are experiencing accelerated erosion. Earlier studies suggest that causes of these rapidly eroding woodlands are related to an unprecedented rapid transition of ponderosa pine (Pinus ponderosa C. Lawson) savanna to pi?on-juniper woodlands as a result of cumulative historical effects of overgrazing, fire suppression, and severe drought. To study the effectiveness of slash treatment in reducing accelerated erosion, we used sediment check dams to quantify sediment yield from twelve paired microwatersheds (300-1100 m2) within an existing paired water-shed study. Six of the twelve microwatersheds were located in a 41-ha (treatment) watershed with scattered slash treatment, whereas six microwatersheds were located in an adjacent 35-ha untreated (control) watershed. The primary purpose of our research was to quantify the rates of sediment yield between the treated and control microwatersheds. Sediment yield was measured from 15 individual storms during the months of June-September (2000 and 2001). In response to slash treatment, mean seasonal sediment yield for 2000 equaled 2.99 Mg/ha in the control vs. 0.03 Mg/ha in the treatment and 2.07 Mg/ha in the control vs. 0.07 Mg/ha in the treatment in 2001. The practice of slash treatment demonstrates efficacy in reducing erosion in degraded pi?on-juniper woodlands by encouraging herbaceous recovery. Our data show that slash treatment increases total ground cover (slash and herbaceous growth) beyond a potential erosion threshold. Restored pi?on-juniper woodlands, as the result of slash treatment, provide a forest structure similar to pre-grazing and pre-fire suppression conditions and decrease catastrophic fire hazard. 相似文献
227.
Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate 总被引:1,自引:0,他引:1
Camargo FA Bento FM Okeke BC Frankenberger WT 《Journal of environmental quality》2003,32(4):1228-1233
Extensive use of hexavalent chromium [Cr(VI)] in various industrial applications has caused substantial environmental contamination. Chromium-resistant bacteria isolated from soils can be used to remove toxic Cr(VI) from contaminated environments. This study was conducted to isolate chromium-resistant bacteria from soils contaminated with dichromate and describes the effects of some environmental factors such as pH, temperature, and time on Cr(VI) reduction and resistance. We found that chromium-resistant bacteria can tolerate 2500 mg L(-1) Cr(VI), but most of the isolates tolerated and reduced Cr(VI) at concentrations lower than 1500 mg L(-1). Chromate reduction activity of whole cells was detected in five isolates. Most of these isolates belong to the genus Bacillus as identified by the 16S rRNA gene sequencing. Maximal Cr(VI) reduction was observed at the optimum pH (7.0-9.0) and temperature (30 degrees C) of growth. One bacterial isolate (Bacillus sp. ES 29) was able to aerobically reduce 90% of Cr(VI) in six hours. The Cr(VI) reduction activity of the whole cells of five isolates had a K(M) of 0.271 (2.61 mM) to 1.51 mg L(-1) (14.50 mM) and a V(max) of 88.4 (14.17 nmol min(-1)) to 489 mg L9-1) h(-1) (78.36 nmol min(-1)). Our consortia and monocultures of these isolates can be useful for Cr(VI) detoxification at low and high concentrations in Cr(VI)-contaminated environments and under a wide range of environmental conditions. 相似文献
228.
Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones 总被引:3,自引:0,他引:3
Riparian buffer zones are known to reduce diffuse N pollution of streams by removing and modifying N from agricultural runoff. Denitrification, often identified as the key N removal process, is also considered as a major source of the greenhouse gas nitrous oxide (N2O). The risks of high N2O emissions during nitrate mitigation and the environmental controls of emissions have been examined in relatively few riparian zones and the interactions between controls and emissions are still poorly understood. Our objectives were to assess the rates of N2O emission from riparian buffer zones that receive large loads of nitrate, and to evaluate various factors that are purported to control N emissions. Denitrification, nitrification, and N2O emissions were measured seasonally in grassland and forested buffer zones along first-order streams in The Netherlands. Lateral nitrate loading rates were high, up to 470 g N m(-2) yr(-1). Nitrogen process rates were determined using flux chamber measurements and incubation experiments. Nitrous oxide emissions were found to be significantly higher in the forested (20 kg N ha(-1) yr(-1)) compared with the grassland buffer zone (2-4 kg N ha(-1) yr(-1)), whereas denitrification rates were not significantly different. Higher rates of N2O emissions in the forested buffer zone were associated with higher nitrate concentrations in the ground water. We conclude that N transformation by nitrate-loaded buffer zones results in a significant increase of greenhouse gas emission. Considerable N2O fluxes measured in this study indicate that Intergovernmental Panel on Climate Change methodologies for quantifying indirect N2O emissions have to distinguish between agricultural uplands and riparian buffer zones in landscapes receiving large N inputs. 相似文献
229.
Intensive livestock operations can release odorous gases from stored or land-applied manure. We measured concentrations of dust and 14 odor-causing gases at increasing distances from four feedlots near Lethbridge, southern Alberta, Canada. Concentration was determined from the amount of total dust or gas accumulated in the sampIers, and the volume of air sampled. Adjacent the feedlots, the maximum concentration of many volatile fatty acids exceeded reported odor detection thresholds; the maximum ammonia concentration was close to the threshold. Ammonia and butyric acid approached or exceeded their individual odor thresholds as far as 200 m downwind of the feedlots. Highest concentrations were measured adjacent to land where manure was being applied. None of the odorant concentrations exceeded their irritation threshold. There was a positive relationship between ammonia concentration and odor intensity as well as dry deposition. Much of the emitted ammonia was deposited to soil immediately downwind, enough to supply all the nitrogen needed for crop growth. Odorant concentrations declined sharply with distance, though measurable odor occasionally persisted to 1 km from the feedlot, beyond the minimum separation guidelines (Alberta) for a single residential dwelling. The weekly averaged total suspended particulates (> 5 microm) were below the Alberta guideline criterion except for one period. Differences among feedlots in odorant plume concentrations were partly related to the stocking density of feedlots, which presumably affects manure moisture and amount of volatiles within the pens. 相似文献
230.
Denitrification potential in urban riparian zones 总被引:3,自引:0,他引:3
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds. 相似文献