首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   3篇
  国内免费   3篇
安全科学   9篇
废物处理   12篇
环保管理   34篇
综合类   53篇
基础理论   83篇
污染及防治   109篇
评价与监测   16篇
社会与环境   10篇
灾害及防治   6篇
  2023年   8篇
  2022年   8篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   12篇
  2017年   9篇
  2016年   14篇
  2015年   11篇
  2014年   10篇
  2013年   20篇
  2012年   12篇
  2011年   19篇
  2010年   13篇
  2009年   18篇
  2008年   11篇
  2007年   15篇
  2006年   15篇
  2005年   12篇
  2004年   19篇
  2003年   13篇
  2002年   15篇
  2001年   7篇
  2000年   4篇
  1999年   12篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1983年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有332条查询结果,搜索用时 281 毫秒
31.
32.
33.
34.
35.
Objective: Autonomous emergency braking (AEB) systems fitted to cars for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programs—for example, the European New Car Assessment Programme (Euro NCAP)—are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully is how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit-related basis.

The objective of this research was to develop a benefit-based methodology for assessment of integrated pedestrian protection systems with AEB and passive safety components. The method should include weighting procedures to ensure that it represents injury patterns from accident data and replicates an independently estimated benefit of AEB.

Methods: A methodology has been developed to calculate the expected societal cost of pedestrian injuries, assuming that all pedestrians in the target population (i.e., pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car's AEB (if fitted) and the passive safety protection offered by the car's frontal structure. For rating purposes, the cost for the assessed car is normalized by comparing it to the cost calculated for a reference car.

The speed reductions measured in AEB tests are used to determine the speed at which each pedestrian in the target population will be impacted. Injury probabilities for each impact are then calculated using the results from Euro NCAP pedestrian impactor tests and injury risk curves. These injury probabilities are converted into cost using “harm”-type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and Great Britain and an independently estimated AEB benefit. German and Great Britain versions of the methodology are available. The methodology was used to assess cars with good, average, and poor Euro NCAP pedestrian ratings, in combination with a current AEB system. The fitment of a hypothetical A-pillar airbag was also investigated.

Results: It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Because the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area, a hypothetical A-pillar airbag showed high potential to reduce overall casualty cost.

Conclusions: A benefit-based methodology for assessment of integrated pedestrian protection systems with AEB has been developed and tested. It uses input from AEB tests and Euro NCAP passive safety tests to give an integrated assessment of the system performance, which includes consideration of effects such as the change in head impact location caused by the impact speed reduction given by the AEB.  相似文献   
36.
Eco-Art has recently emerged as a potential means to place emphasis on environmental issues such as climate change, recycling and the metabolism of the city experienced both materially and conceptually within local, regional and global contexts. Such art presents the possibility of shaping civic practices in arenas beyond those of traditional planning domains. Adopting a pragmatic approach, which recognises the contextual pluralism that exists in debates regarding climate change, this paper is interested in how Eco-Art projects encourage the re-imagining of urban spaces within the context of sustainability, and flows of materials and the recycling of plastic in art specifically.  相似文献   
37.
Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies.In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP21) and respiration activity over 4 days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3 years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号