首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   0篇
  国内免费   3篇
安全科学   1篇
废物处理   14篇
环保管理   10篇
综合类   12篇
基础理论   47篇
污染及防治   21篇
评价与监测   9篇
  2023年   23篇
  2022年   14篇
  2021年   5篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   20篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有114条查询结果,搜索用时 0 毫秒
51.

Conventional methods to clean wastewater actually lead to incomplete treatments, calling for advanced technologies to degrade recalcitrant pollutants. Herein we review solar photo-oxidation to degrade the recalcitrant contaminants in industrial wastewater, with focus on photocatalysts, reactor design and the photo-Fenton process. We discuss limitations due to low visible-light absorption, catalyst collection and reusability, and production of toxic by-products. Photodegradation of refractory organics by solar light is controlled by pH, photocatalyst composition and bandgap, pollutant properties and concentration, irradiation type and intensity, catalyst loading, and the water matrix.

  相似文献   
52.
Urban air pollution is a growing problem in developing countries. Some compounds especially sulphur dioxide (SO2) is considered as typical indicators of the urban air quality. Air pollution modeling and prediction have great importance in preventing the occurrence of air pollution episodes and provide sufficient time to take the necessary precautions. Recently, various stochastic image-processing algorithms such as Artificial Neural Network (ANN) are applied to environmental engineering. ANN structure employs input, hidden and output layers. Due to the complexity of the problem, as the number of input–output parameters differs, ANN model settings such as the number of neurons of these layers changes. The ability of ANN models to learn, particularly capability of handling large amounts (or sets) of data simultaneously as well as their fast response time, are invariably the characteristics desired for predictive and forecasting purposes. In this paper, ANN models have been used to predict air pollutant parameter in meteorological considerations. We have especially focused on modeling of SO2 distribution and predicting its future concentration in Istanbul, Turkey. We have obtained data sets including meteorological variables and SO2 concentrations from Istanbul-Florya meteorological station and Istanbul-Yenibosna air pollution station. We have preferred three-layer perceptron type of ANN which consists of 10, 22 and 1 neurons for input, hidden and output layers, respectively. All considered parameters are measured as daily mean. The input parameters are: SO2 concentration, pressure, temperature, humidity, wind direction, wind speed, strength of sunshine, sunshine, cloudy, rainfall and output parameter is the future prediction of SO2. To evaluate the performance of ANN model, our results are compared to classical nonlinear regression methods. The over all system finds an optimum correlation between input–output variables. Here, the correlation parameter, r is 0.999 and 0.528 for training and test data. Thus in our model, the trend of SO2 is well estimated and seasonal effects are well represented. As a result, we conclude that ANN is one of the compromising methods in estimation of environmental complex air pollution problems.  相似文献   
53.
The aim of this study was to determine if high concentrations of any heavy metals exist in the sediment of Seyhan Dam reservoir to be considered toxic to the aquatic environment. Surface sediment samples from five stations in the Seyhan dam were collected quarterly from 2004 to 2005 and examined for metal content (Cr, Zn Cu, Mn, Cd, Fe, Ca, K, and Na), organic matter, and grain size. Correlation analyses showed that metal content of Seyhan dam sediment was affected by organic matter and grain size. The results have been compared with values given in the literature. The evaluation of the metal pollution status of the dam was carried out by using the enrichment factor and the geoaccumulation index. A comparison with sediment quality guideline values has also been made. Based on the enrichment factor, dam sediments were treated as a moderately severe enrichment with Cd and minor enrichment with Cr and Mn. The results of geoaccumulation index reveal that sediments of Seyhan Dam were strongly polluted in stations 1, 2, 4, and 5, and were moderately polluted in station 3 with Cd. Moreover, Cd and Cr concentrations in the sediments were above TECs except ERL for Cd.  相似文献   
54.
This study investigate the relationships between genomorphometric properties and the minimum low flow dischare of undisturbed drainage basins in the Taman BukitCahaya Seri Alam Forest Reserve,Peninsular Malaysia.The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses.Three levels of relationships were observed in the study.Significant relationships exised between the genomorphometric properties as shown by the correlation network analysis;secondly,individual geomorphometric properties were observed to influence minimum flow discharge;and finally,the multiple regression model set up showed that minimum flow discharge(Qnub)was dependent of basin area(AU),stream length(LS),maximum relief(Hmax),average relief (HAV) and stream frequency(SF).These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins.Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response.In the case of the basin‘s minimum low flow,a change in any of the properties considered in the regression model influenced the “time to peak”of flow.A shorter time period would mean higher discharge,which is generally considered the prerquisite to flooding.This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months .Drainage basins are sensitive entities and any deterioratons involve will generate reciprocals and response to water supply as well as the habitat within the areas.  相似文献   
55.
56.
In this study, Membrane Filtration (UF+RO), Struvite (MAP) precipitation and ammonia stripping alternatives were studied on biologically pre-treated Landfill Leachate. The results indicated that the system including the Upflow Anaerobic Sludge Blanket Reactor (UASBR) and Membrane Reactors (UF+RO) has been offered as an appropriate treatment alternative for young landfill leachates. This system provided high removals of COD, colour and conductivity (>98-99%). For ammonia removal, struvite precipitation was applied at the stoichiometric ratio (Mg:NH4:PO4=1:1:1) to anaerobically pre-treated raw landfill leachate effluent having an influent ammonium concentration of 2240 mg/l. Maximum ammonium nitrogen removal was observed as 85% at pH of 9.2. In ammonia stripping following 2 h of aeration, the removal was 72% at pH=12 while the removals were around 20% at pH=10 and pH=11. When membrane reactor, and struvite precipitation or ammonia stripping was applied to anaerobically pre-treated effluents, the results indicated that each system could be used as an appropriate post-treatment option for young landfill leachates. In economic aspect, ammonia stripping was found as the cheapest alternative with high ammonium removal. However, when both high COD and ammonium removals were to be achieved membrane technology such as UF+RO (SW) could be considered as the most appropriate system due to the fact that COD removal could be obtained very low by ammonia stripping.  相似文献   
57.
Species interactions are widely assumed to be stronger at lower latitudes, but surprisingly few experimental studies test this hypothesis, and none ties these processes to observed patterns of species richness across latitude. We report here the first experimental field test that predation is both stronger and has a disproportionate effect on species richness in the tropics relative to the temperate zone. We conducted predator-exclusion experiments on communities of sessile marine invertebrates in four regions, which span 32 degrees latitude, in the western Atlantic Ocean and Caribbean Sea. Over a three-month timescale, predation had no effect on species richness in the temperate zone. In the tropics, however, communities were from two to over ten times more species-rich in the absence of predators than when predators were present. While micro-and macro-predators likely compete for the limited prey resource in the tropics, micropredators alone were able to exert as much pressure on the invertebrate communities as the full predator community. This result highlights the extent to which exposure to even a subset of the predator guild can significantly impact species richness in the tropics. Patterns were consistent in analyses that included relative and total species abundances. Higher species richness in the absence of predators in the tropics was also observed when species occurrences were pooled across two larger spatial scales, site and region, demonstrating a consistent scaling relationship. These experimental results show that predation can both limit local species abundances and shape patterns of regional coexistence in the tropics. When preestablished diverse tropical communities were then exposed to predation for different durations, ranging from one to several days, species richness was always reduced. These findings confirmed that impacts of predation in the tropics are strong and consistent, even in more established communities. Our results offer empirical support for the long-held prediction that predation pressure is stronger at lower latitudes. Furthermore, we demonstrate the magnitude to which variation in predation pressure can contribute to the maintenance of tropical species diversity.  相似文献   
58.

Access to drinkable water is becoming more and more challenging due to worldwide pollution and the cost of water treatments. Water and wastewater treatment by adsorption on solid materials is usually cheap and effective in removing contaminants, yet classical adsorbents are not sustainable because they are derived from fossil fuels, and they can induce secondary pollution. Therefore, biological sorbents made of modern biomass are increasingly studied as promising alternatives. Indeed, such biosorbents utilize biological waste that would otherwise pollute water systems, and they promote the circular economy. Here we review biosorbents, magnetic sorbents, and other cost-effective sorbents with emphasis on preparation methods, adsorbents types, adsorption mechanisms, and regeneration of spent adsorbents. Biosorbents are prepared from a wide range of materials, including wood, bacteria, algae, herbaceous materials, agricultural waste, and animal waste. Commonly removed contaminants comprise dyes, heavy metals, radionuclides, pharmaceuticals, and personal care products. Preparation methods include coprecipitation, thermal decomposition, microwave irradiation, chemical reduction, micro-emulsion, and arc discharge. Adsorbents can be classified into activated carbon, biochar, lignocellulosic waste, clays, zeolites, peat, and humic soils. We detail adsorption isotherms and kinetics. Regeneration methods comprise thermal and chemical regeneration and supercritical fluid desorption. We also discuss exhausted adsorbent management and disposal. We found that agro-waste biosorbents can remove up to 68–100% of dyes, while wooden, herbaceous, bacterial, and marine-based biosorbents can remove up to 55–99% of heavy metals. Animal waste-based biosorbents can remove 1–99% of heavy metals. The average removal efficiency of modified biosorbents is around 90–95%, but some treatments, such as cross-linked beads, may negatively affect their efficiency.

  相似文献   
59.
Environmental Chemistry Letters - Yogurt is a major fermented milk product providing probiotics, lactic acid bacteria, vitamins, calcium, and proteins, yet health-beneficial phenolics, flavonoids,...  相似文献   
60.

The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electrocatalysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. Photocatalysis produced dihydrogen (H2) with generation rate higher than 100 μmol h−1. Dihydrogen yields ranged from 27 to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号