首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16392篇
  免费   242篇
  国内免费   338篇
安全科学   452篇
废物处理   722篇
环保管理   1861篇
综合类   3006篇
基础理论   4459篇
环境理论   5篇
污染及防治   4222篇
评价与监测   1126篇
社会与环境   995篇
灾害及防治   124篇
  2022年   187篇
  2021年   166篇
  2020年   157篇
  2019年   162篇
  2018年   233篇
  2017年   294篇
  2016年   373篇
  2015年   325篇
  2014年   502篇
  2013年   1290篇
  2012年   559篇
  2011年   761篇
  2010年   666篇
  2009年   634篇
  2008年   720篇
  2007年   752篇
  2006年   625篇
  2005年   547篇
  2004年   557篇
  2003年   537篇
  2002年   514篇
  2001年   656篇
  2000年   483篇
  1999年   262篇
  1998年   177篇
  1997年   209篇
  1996年   206篇
  1995年   237篇
  1994年   237篇
  1993年   182篇
  1992年   198篇
  1991年   186篇
  1990年   203篇
  1989年   187篇
  1988年   153篇
  1987年   164篇
  1986年   155篇
  1985年   157篇
  1984年   148篇
  1983年   140篇
  1982年   125篇
  1981年   120篇
  1980年   115篇
  1979年   124篇
  1978年   100篇
  1977年   113篇
  1975年   87篇
  1974年   87篇
  1973年   96篇
  1972年   86篇
排序方式: 共有10000条查询结果,搜索用时 47 毫秒
921.
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.

Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.  相似文献   

922.
While science advances technology, it is also true that technology advances science. Thus, the two bodies of knowledge are increasingly recognized as interdependent. Nonetheless, recent advances in information communication technology (ICT), in particular, may have profound implications for the norms by which science is conducted. For example, treatment of data will increasingly be in terms of probability distributions, rather than as point estimates, because the cost of computation is now so low that more robust approaches to treatment of uncertainty are within the grasp of normal science. Perhaps more importantly, the techniques by which scientists collaborate, communicate, and curate science are undergoing a rare period of rapid change. The papers in this special section exemplify the evolution of the relationship between technology and science in these two important ways: (1) treatment of data uncertainties and (2) participation in novel methods of publication and review. The latter was fostered by the 2016 meeting of the International Symposium on Sustainable Systems and Technologies (ISSST), at which all of the papers in this special section were presented. This editorial summarizes some of the trends in ICT that are the subject of experimentation in ISSST and introduces the idea that scientific societies in the information age are more likely to take the form of a network than they are likely to look like the societies of the last several centuries.  相似文献   
923.
924.
Abstract

Azadirachtin‐A on exposure to UV‐light (254 nm) as a thin film on glass surface gave a isomerised (Z)‐2‐ methylbut‐2‐enoate product. Half‐life of azadirachtin‐A as thin film under UV light was found to be 48 min. Azadirachtin ‐A was irradiated along with saturated and unsaturated fatty acids, and fatty oils under ultra‐violet light as thin film. Saturated fatty acid increased the rate of photodegradation of azadirachtin‐A, whereas unsaturated fatty acids such as oleic, linoleic and elaidic acid reduced the rate of degradation. Castor, linseed and olive oil accelerated the rate of degradation, whereas neem oil showed no or little change in the rate of degradation of azadirachtin‐A. None of these fatty acids and fatty oils were effective in controlling the rate of degradation of azadirachtin‐A under UV‐light as thin film.  相似文献   
925.
The concentration of biogenic amines and free amino acids was studied in 102 Portuguese wines and 18 musts from Alentejo demarcated (D.O.C.) regions. Most wines were commercial, except for 38 monovarietals obtained by micro vinification. Musts from the varieties used to produce the latter wines were also studied. Both biogenic amines and free amino acids were analyzed by HPLC using fluorescence detection for their o-phthalaldehyde/fluorenylmethyl chloroformate (OPA/FMOC) derivatives. The most significant amines (average 10.8 mg/L for histamine+tyramine in red, and 7.4 mg/L for white wines) were found to be present at low levels and, although no important relationship between each individual biogenic amine could be obtained, the total amine content depends significantly on the assimilable amino acid content in wine.  相似文献   
926.
The human intestinal absorption of acetamiprid (AAP) using the Caco-2 cell line reveals that AAP flux was active in a bidirectional mode with an apparent permeability coefficient of 26.10?6 cm·s?1 at 37°C. Apical uptake was concentration-dependent and unsaturated for AAP concentrations up to 200 μ M. AAP cell preloading demonstrated the involvement of active transport mechanisms. Arrhenius plot analysis revealed an unusual profile with two apparent activation energies suggesting two transport processes. Uptake Vi studies indicated the involvement of a sodium-dependent transporter, the presence of a common transporter of AAP and nicotine and the involvement of Ti-sensitive ATP-dependent efflux transporters. Apical efflux investigations showed the involvement of inward active transporter(s). Whereas vincristine had no effect on intracellular accumulation, taxol and daunorubicin treatments unexpectedly led to 10% and 23% reductions respectively, suggesting that the latter shared a common inward transporter with AAP. All these results suggest full and express AAP absorption in vivo with transport involving both inward and outward, passive and active mechanisms. Thus, AAP or its metabolites could be representative of a risk for human health after its ingestion in food.  相似文献   
927.
A pot trial was carried out to investigate the adverse effects of tetracycline (TC) on soil microbial communities, microbial activities, and the growth of ryegrass (Lolium perenne L). The results showed that the presence of TC significantly disturbed the structure of microbial communities and inhibited soil microbial activities in terms of urease, acid phosphatase and dehydrogenase (p < 0.05). Plant biomass was adversely influenced by TC, especially the roots with a reduction of 40% when compared with the control. Furthermore, TC decreased the assimilation of phosphorus by the plant although the concentration of phosphorus was increased by 20% due to decreased plant biomass. TC seemed to increase the concentration of dissolved organic carbon (by 20%) in soil. The findings implied that the agricultural use of animal manure or fishpond sediment containing considerable amounts of antibiotics may give rise to ecological risks.  相似文献   
928.
Methanogenic granular sludge and wastewater fermented sludge were used as inocula for batch tests of anaerobic bioremediation of chlorinated pesticide contaminated soil. Results obtained for both types of biomass were similar: 80 to over 90% of γ -hexachlorocyclohexane (γ-HCH), 1,1,1-trichloro-2,2-bis-(4-methoxyphenyl)ethane (methoxychlor) and 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT) removed in 4–6 weeks. Residual fractions of these pesticides persisted till the end of the 16-week experiment. DDT was degraded through 1,1-dichloro-2,2-bis-(4-chlorophenyl)ethane (DDD). Accumulation of this product corresponded stoichiometrically only to 34–53% of removed DDT, supposedly due to its further transformations, finally resulting in formation of detected 4,4′-dichlorobenzophenone (DBP). Addition of 0.5 mM Tween 80 nonionic surfactant resulted in about a twofold decrease of γ -HCH and methoxychlor residual concentrations, as well as considerably lower DDD accumulation (7–29%) and higher DBP production. However, 1.25 mM dose of this surfactant applied together with granular sludge brought DDD levels back to that observed for treatments with the sludge alone, also impairing DBP formation.  相似文献   
929.
The goals of the present work were as follows: to obtain the dormant forms of R. opacus 1cp; to study the phenotypic variability during their germination; to compare phenotypic variants during the growth on selective and elective media; and to reveal changes in the ability of the strain to destruct xenobiotics that had not been degradable before dormancy. It was shown that Rhodococcus opacus 1cp (the strain degrading chlorinated phenols) became able to utilize a broader spectrum of xenobiotics after storage in the dormant state. Germination of the dormant forms of R. opacus 1cp on an agarized medium was followed by emergence and development of phenotypic variants that could grow on 4-chlorophenol and 2,4,6-trichlorophenol without adaptation. The cells of R. opacus 1cp phenotypic variants also utilized all of the tested chlorinated phenols: 2,3-, 2,5-, and 2,6-dichloro-, 2,3,4- and 2,4,5-trichloro-, pentachlorophenol, and 1,2,4,5-tetrachlorobenzene in concentrations up to 60 mg/L, though at the lower rates than 4-CP and 2,4,6-TCP. The improved degradation of chlorinated phenols by R. opacus strain 1cp exposed to the growth arrest conditions demonstrates the significance of dormancy for further manifestation of the adaptive potential of populations. A new principle of selection of variants with improved biodegradative properties was proposed. It embraces introduction of the dormancy stage into the cell life cycle with subsequent direct inoculation of morphologically different colonies into the media with different toxicants, including those previously not degraded by the strain.  相似文献   
930.
Recent toxicological results highlight the importance of separating exposure to indoor- and outdoor-generated particles, due to their different physicochemical and toxicological properties. In this framework, a number of studies have attempted to estimate the relative contribution of particles of indoor and outdoor origins to indoor concentrations, using either statistical analysis of indoor and outdoor concentration time-series or mass balance equations. The aim of this work is to review and compare the methodologies developed in order to determine the ambient particle infiltration factor (F INF) (i.e., the fraction of ambient particles that enter indoors and remains suspended). The different approaches are grouped into four categories according to their methodological principles: (1) steady-state assumption using the steady-state form of the mass balance equation; (2) dynamic solution of the mass balance equation using complex statistical techniques; (3) experimental studies using conditions that simplify model calculations (e.g., decreasing the number of unknowns); and (4) infiltration surrogates using a particulate matter (PM) constituent with no indoor sources to act as surrogate of indoor PM of outdoor origin. Examination of the various methodologies and results reveals that estimating infiltration parameters is still challenging. The main difficulty lies in the separate calculation of penetration efficiency (P) and deposition rate (k). The values for these two parameters that are reported in the literature vary significantly. Deposition rate presents the widest range of values, both between studies and size fractions. Penetration efficiency seems to be more accurately calculated through the application of dynamic models. Overall, estimates of the infiltration factor generated using dynamic models and infiltration surrogates show good agreement. This is a strong argument in favor of the latter methodology, which is simple and easy to apply when chemical speciation data are available.

Implications: ?Taking into account that increased health risks may be related with ambient particles, a reliable estimation of the main parameters governing ambient particle infiltration indoors may assist towards the development of appropriate regulation and control measures, targeted to specific sources/factors contributing to increased exposures. The overall study of the methodological approaches estimating particle infiltration indoors suggests that dynamic models provide a more complete and realistic picture of ambient particle infiltration indoors, whereas the use of specific PM constituents to act as surrogates of indoor particles of outdoor origin seems also a promising new methodology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号