首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27560篇
  免费   244篇
  国内免费   264篇
安全科学   689篇
废物处理   1163篇
环保管理   3149篇
综合类   5341篇
基础理论   7081篇
环境理论   10篇
污染及防治   6959篇
评价与监测   1954篇
社会与环境   1564篇
灾害及防治   158篇
  2022年   235篇
  2021年   193篇
  2020年   163篇
  2019年   187篇
  2018年   368篇
  2017年   403篇
  2016年   585篇
  2015年   458篇
  2014年   773篇
  2013年   2067篇
  2012年   874篇
  2011年   1179篇
  2010年   988篇
  2009年   1008篇
  2008年   1138篇
  2007年   1178篇
  2006年   1020篇
  2005年   915篇
  2004年   878篇
  2003年   889篇
  2002年   838篇
  2001年   1128篇
  2000年   775篇
  1999年   472篇
  1998年   293篇
  1997年   339篇
  1996年   355篇
  1995年   404篇
  1994年   389篇
  1993年   293篇
  1992年   333篇
  1991年   320篇
  1990年   345篇
  1989年   310篇
  1988年   283篇
  1987年   243篇
  1986年   252篇
  1985年   264篇
  1984年   247篇
  1983年   237篇
  1982年   230篇
  1981年   225篇
  1980年   185篇
  1979年   208篇
  1978年   191篇
  1977年   182篇
  1975年   163篇
  1974年   179篇
  1973年   163篇
  1972年   162篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The challenges currently facing resource managers are large-scale and complex, and demand new approaches to balance development and conservation goals. One approach that shows considerable promise for addressing these challenges is adaptive management, which by now is broadly seen as a natural, intuitive, and potentially effective way to address decision-making in the face of uncertainties. Yet the concept of adaptive management continues to evolve, and its record of success remains limited. In this article, we present an operational framework for adaptive decision-making, and describe the challenges and opportunities in applying it to real-world problems. We discuss the key elements required for adaptive decision-making, and their integration into an iterative process that highlights and distinguishes technical and social learning. We illustrate the elements and processes of the framework with some successful on-the-ground examples of natural resource management. Finally, we address some of the difficulties in applying learning-based management, and finish with a discussion of future directions and strategic challenges.  相似文献   
992.
Restoring prairie on formerly cultivated land begins by selecting propagule seed sources and the diversity of species to reintroduce. This study examined the effects of dominant grass propagule source (cultivar vs. non-cultivar) and sown propagule diversity (grass:forb sowing ratio) on plant community structure. Two field experiments were established in Kansas and Illinois consisting of identical split plot designs. Dominant grass source was assigned as the whole-plot factor, and sown dominance of grasses (five levels of seeded grass dominance) as the subplot factor. Species density, cover, and diversity were quantified for 5 years. The effect of dominant grass source on the cover of focal grasses, sown species, and volunteer species was contingent upon location, with variation between dominant grass sources observed exclusively in Kansas. Species density and diversity showed regionally convergent patterns in response to dominant grass source. Contrary to our hypotheses, total species density and diversity were not lower in the presence of grass cultivars, the grass source we had predicted would be more competitive. Sown grass dominance effects on the cover of the focal grass species were contingent upon location resulting from establishment corresponding better to the assigned treatments in Illinois. All other cover groups showed regionally convergent patterns, with lower cover of volunteers and higher cover of sown forbs, diversity, and species density in the lowest sown grass dominance treatment in both sites. Thus, decisions regarding the diversity of propagules to reintroduce had more consequence for plant community structure than cultivar or non-cultivar source of dominant grasses.  相似文献   
993.
Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.  相似文献   
994.
Several social theories have been proposed to explain the uneven distribution of vegetation in urban residential areas: population density, social stratification, luxury effect, and ecology of prestige. We evaluate these theories using a combination of demographic and socio-economic predictors of vegetative cover on all residential lands in New York City. We use diverse data sources including the City’s property database, time-series demographic and socio-economic data from the US Census, and land cover data from the University of Vermont’s Spatial Analysis Lab (SAL). These data are analyzed using a multi-model inferential, spatial econometrics approach. We also examine the distribution of vegetation within distinct market categories using Claritas’ Potential Rating Index for Zipcode Markets (PRIZM?) database. These categories can be disaggregated, corresponding to the four social theories. We compare the econometric and categorical results for validation. Models associated with ecology of prestige theory are more effective for predicting the distribution of vegetation. This suggests that private, residential patterns of vegetation, reflecting the consumption of environmentally relevant goods and services, are associated with different lifestyles and lifestages. Further, our spatial and temporal analyses suggest that there are significant spatial and temporal dependencies that have theoretical and methodological implications for understanding urban ecological systems. These findings may have policy implications. Decision makers may need to consider how to most effectively reach different social groups in terms of messages and messengers in order to advance land management practices and achieve urban sustainability.  相似文献   
995.
Managing Protected Areas Under Climate Change: Challenges and Priorities   总被引:1,自引:0,他引:1  
The implementation of adaptation actions in local conservation management is a new and complex task with multiple facets, influenced by factors differing from site to site. A transdisciplinary perspective is therefore required to identify and implement effective solutions. To address this, the International Conference on Managing Protected Areas under Climate Change brought together international scientists, conservation managers, and decision-makers to discuss current experiences with local adaptation of conservation management. This paper summarizes the main issues for implementing adaptation that emerged from the conference. These include a series of conclusions and recommendations on monitoring, sensitivity assessment, current and future management practices, and legal and policy aspects. A range of spatial and temporal scales must be considered in the implementation of climate-adapted management. The adaptation process must be area-specific and consider the ecosystem and the social and economic conditions within and beyond protected area boundaries. However, a strategic overview is also needed: management at each site should be informed by conservation priorities and likely impacts of climate change at regional or even wider scales. Acting across these levels will be a long and continuous process, requiring coordination with actors outside the “traditional” conservation sector. To achieve this, a range of research, communication, and policy/legal actions is required. We identify a series of important actions that need to be taken at different scales to enable managers of protected sites to adapt successfully to a changing climate.  相似文献   
996.
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号