全文获取类型
收费全文 | 1353篇 |
免费 | 86篇 |
国内免费 | 464篇 |
专业分类
安全科学 | 104篇 |
废物处理 | 77篇 |
环保管理 | 91篇 |
综合类 | 793篇 |
基础理论 | 193篇 |
环境理论 | 1篇 |
污染及防治 | 488篇 |
评价与监测 | 58篇 |
社会与环境 | 57篇 |
灾害及防治 | 41篇 |
出版年
2024年 | 1篇 |
2023年 | 31篇 |
2022年 | 97篇 |
2021年 | 84篇 |
2020年 | 66篇 |
2019年 | 43篇 |
2018年 | 53篇 |
2017年 | 77篇 |
2016年 | 72篇 |
2015年 | 92篇 |
2014年 | 110篇 |
2013年 | 152篇 |
2012年 | 116篇 |
2011年 | 116篇 |
2010年 | 95篇 |
2009年 | 69篇 |
2008年 | 98篇 |
2007年 | 65篇 |
2006年 | 59篇 |
2005年 | 41篇 |
2004年 | 33篇 |
2003年 | 34篇 |
2002年 | 36篇 |
2001年 | 31篇 |
2000年 | 38篇 |
1999年 | 38篇 |
1998年 | 21篇 |
1997年 | 25篇 |
1996年 | 21篇 |
1995年 | 24篇 |
1994年 | 18篇 |
1993年 | 21篇 |
1992年 | 8篇 |
1991年 | 4篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1973年 | 1篇 |
排序方式: 共有1903条查询结果,搜索用时 15 毫秒
91.
Kuan Lun Pan Sheng Jen Yu Shaw Yi Yan 《Journal of the Air & Waste Management Association (1995)》2014,64(11):1260-1269
Direct decomposition of N2O by perovskite-structure catalysts including La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 was investigated. The catalysts were prepared by the Pechini method and characterized by x-ray diffraction (XRD), BET, scanning electron microscopy (SEM), and O2-TPD. Experimental results indicate that the properties of La2NiO4 are significantly improved by partially substituting La with Sr and Ce. N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 are 44 and 36%, respectively, at 400ºC. As the temperature was increased to 600ºC, N2O decomposition efficiency achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 reached 100% at an inlet N2O concentration of 1,000 ppm, while the space velocity was fixed at 8,000 hr?1. In addition, effects of various parameters including oxygen, water vapor, and space velocity were also explored. The results indicate that N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 are not significantly affected as space velocity is increased from 8,000 to 20,000 hr?1, while La0.7Ce0.3SrNiO4 shows better tolerance for O2 and H2O(g). On the other hand, N2 yield with LaSrNiO4 as catalyst can be significantly improved by doping Ce. At a gas hour space velocity of 8,000 hr?1, and a temperature of 600ºC, high N2O decomposition efficiency and N2 yield were maintained throughout the durability test of 60 hr, indicating the long-term stability of La0.7Ce0.3SrNiO4 for N2O decomposition.
Implications:Nitrous oxide (N2O) not only has a high global warming potential (GWP100 = 310), but also potentially destroys ozone in the stratosphere. Pervoskite-type catalysts including La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 are applied for direct N2O decomposition. The results show that N2O decomposition can be enhanced as Sr and Ce are doped into La2NiO4. At 600ºC, N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 reach 100%, demonstrating high activity and good potential for direct N2O decomposition. Effects of O2 and H2O(g) contents on catalytic activities are also evaluated and discussed. 相似文献
92.
对多环芳烃(PAHS)4种理化参数(K;W、Sw。X Vv。)与 LCO的相关关系进行了研究,建立了 4种一元线性回归方程。结果表明,4种参数的相关系数分别为:0.刀66、08083、09488、0.9570,经r检验,后两种属高度显著相关.用所建立的一元线性回归方程对7种PAHS的LC。进行估算,估算值与实测值相比,平均相对误差分别为58.84%、32.23%、1761%、198%,用l和V*.H对LClj进行估算的估算精度也较高。经比较,提出用(。估算P*比对麦穗鱼*CO的新方法。 相似文献
93.
人工神经网络方法用于城市环境空气质量综合评价 总被引:3,自引:0,他引:3
采用人工神经网络技术,建立了城市环境空气质量综合评价的ANN模型,并通过实例对建立的评价模型进行验证。结果证明,ANN模型用于区域环境空气质量评价,其评价结果比较直观。同时,对在建立和应用ANN模型时应注意的一些问题进行了讨论。 相似文献
94.
Tao X Tang C Wu P Han Z Zhang C Zhang Y 《Journal of environmental monitoring : JEM》2011,13(11):3269-3276
Occurrence, variation and behaviour of nonylphenol (NP) and octylphenol (OP) were studied in surface water and groundwater in Guiyang, Guizhou Province, southwestern China. Discharge of wastewater from Guiyang City was the main source of alkylphenols (APs) entering the aquatic environment. The concentrations of NP and OP in river water ranged from 40 to 1582 ng L(-1) and from below the lowest limit of detection (LOD) to 67 ng L(-1), respectively. NP and OP were also detected in groundwater. Both NP and OP exhibited spatial and temporal variations in river water and groundwater. It was found that concentrations of NP and OP in river water was low upstream and dramatically increased downstream, and higher concentration of NP was found in winter compared to that in summer. Proportions of NP and OP were trapped by suspended particulate matter (SPM), which accounted for 7.6-50.0% and 3.4-25.6% of their total concentration in the river water system, respectively. Seasonal changes in water flow were responsible for the temporal variations of APs. To determine the behaviour of APs along the river, a mass balance equation based on chloride was used. The results showed that a mixing process was the predominant factor to determine upstream APs concentrations; while the discharge of wastewater controlled the concentrations of APs downstream. Considering the adverse effect of APs on organisms, combined effect modeling was used to assess the toxicity to fish. It was found that the predicted mixture effect for APs in river water on fish vitellogenin induction was low upstream and medium downstream, respectively. 相似文献
95.
96.
战略环境评价及其应用初探 总被引:1,自引:0,他引:1
概述了战略环境价的概念、产生原因、研究现状及其工作程序,结合川南矿肥工程项目对它进行了应用初探,提出了计划、规划层次SEA的方法和指标,并对我国环评工作提出了建议。 相似文献
97.
烟气脱硝技术及在我国的应用 总被引:3,自引:0,他引:3
氮氧化物气体是危害最大、最难处理的大气污染物之一。随着经济的发展,有效控制燃煤造成的大气污染已经刻不容缓,特别是控制燃煤过程中的氮氧化物,烟气脱硝技术显得相当重要。本文分析了几种常用的烟气脱硝技术(选择性催化还原脱硝技术、选择性非催化还原脱硝技术、碱性溶液吸收法和等离子体活化法等)的原理、技术特点以及在我国的应用情况。 相似文献
98.
Dane Westerdahl Xing Wang Xiaochuan Pan K. Max Zhang 《Atmospheric environment (Oxford, England : 1994)》2009,43(3):697-705
In this paper, we report the results and analysis of a recent field campaign in August 2007 investigating the impacts of emissions from transportation on air quality and community concentrations in Beijing, China. We conducted measurements in three different environments, on-road, roadside and ambient. The carbon monoxide, black carbon and ultrafine particle number emission factors for on-road light-duty vehicles are derived to be 95 g kg?1-fuel, 0.3 g kg?1-fuel and 1.8 × 1015 particles kg?1-fuel, respectively. The emission factors for on-road heavy-duty vehicles are 50 g kg?1-fuel, 1.3 g kg?1-fuel and 1.1 × 1016 particles kg?1-fuel, respectively. The carbon monoxide emission factors from this study agree with those derived from remote sensing and on-board vehicle emission testing systems in China. The on-road black carbon and particle number emission factors for Chinese vehicles are reported for the first time in the literature. Strong traffic impacts can be observed from the concentrations measured in these different environments. Most clear is a reflection of diesel truck traffic activity in black carbon concentrations. The comparison of the particle size distributions measured at the three environments suggests that the traffic is a major source of ultrafine particles. A four-day traffic control experiment conducted by the Beijing Government as a pilot to test the effectiveness of proposed controls was found to be effective in reducing extreme concentrations that occurred at both on-road and ambient environments. 相似文献
99.
Part V—sorption of pharmaceuticals and personal care products 总被引:5,自引:0,他引:5
Background, aim, and scope Pharmaceuticals and personal care products (PPCPs) including antibiotics, endocrine-disrupting chemicals, and veterinary pharmaceuticals
are emerging pollutants, and their environmental risk was not emphasized until a decade ago. These compounds have been reported
to cause adverse impacts on wildlife and human. However, compared to the studies on hydrophobic organic contaminants (HOCs)
whose sorption characteristics is reviewed in Part IV of this review series, information on PPCPs is very limited. Thus, a
summary of recent research progress on PPCP sorption in soils or sediments is necessary to clarify research requirements and
directions.
Main features We reviewed the research progress on PPCP sorption in soils or sediments highlighting PPCP sorption different from that of
HOCs. Special function of humic substances (HSs) on PPCP behavior is summarized according to several features of PPCP–soil
or sediment interaction. In addition, we discussed the behavior of xenobiotic chemicals in a three-phase system (dissolved
organic matter (DOM)–mineral–water). The complexity of three-phase systems was also discussed.
Results Nonideal sorption of PPCPs in soils or sediments is generally reported, and PPCP sorption behavior is relatively a more complicated
process compared to HOC sorption, such as the contribution of inorganic fractions, fast degradation and metabolite sorption,
and species-specific sorption mechanism. Thus, mechanistic studies are urgently needed for a better understanding of their
environmental risk and for pollution control.
Discussion Recent research progress on nonideal sorption has not been incorporated into fate modeling of xenobiotic chemicals. A major
reason is the complexity of the three-phase system. First of all, lack of knowledge in describing DOM fractionation after
adsorption by mineral particles is one of the major restrictions for an accurate prediction of xenobiotic chemical behavior
in the presence of DOM. Secondly, no explicit mathematical relationship between HS chemical–physical properties, and their
sorption characteristics has been proposed. Last but not least, nonlinear interactions could exponentially increase the complexity
and uncertainties of environmental fate models for xenobiotics. Discussion on proper simplification of fate modeling in the
framework of nonlinear interactions is still unavailable.
Conclusions Although the methodologies and concepts for studying HOC environmental fate could be adopted for PPCP study, their differences
should be highly understood. Prediction of PPCP environmental behavior needs to combine contributions from various fractions
of soils or sediments and the sorption of their metabolites and different species.
Recommendations and perspectives More detailed studies on PPCP sorption in separated soil or sediment fractions are needed in order to propose a model predicting
PPCP sorption in soils or sediments based on soil or sediment properties. The information on sorption of PPCP metabolites
and species and the competition between them is still not enough to be incorporated into any predictive models. 相似文献
100.
Incorporating layer- and local-scale heterogeneities in numerical simulation of unsaturated flow and tracer transport 总被引:1,自引:0,他引:1
Feng Pan Ming Ye Jianting Zhu Yu-Shu Wu Bill X. Hu Zhongbo Yu 《Journal of contaminant hydrology》2009,103(3-4):194-205
This study characterizes layer- and local-scale heterogeneities in hydraulic parameters (i.e., matrix permeability and porosity) and investigates the relative effect of layer- and local-scale heterogeneities on the uncertainty assessment of unsaturated flow and tracer transport in the unsaturated zone of Yucca Mountain, USA. The layer-scale heterogeneity is specific to hydrogeologic layers with layerwise properties, while the local-scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. A Monte Carlo method is used to estimate mean, variance, and 5th, and 95th percentiles for the quantities of interest (e.g., matrix saturation and normalized cumulative mass arrival). Model simulations of unsaturated flow are evaluated by comparing the simulated and observed matrix saturations. Local-scale heterogeneity is examined by comparing the results of this study with those of the previous study that only considers layer-scale heterogeneity. We find that local-scale heterogeneity significantly increases predictive uncertainty in the percolation fluxes and tracer plumes, whereas the mean predictions are only slightly affected by the local-scale heterogeneity. The mean travel time of the conservative and reactive tracers to the water table in the early stage increases significantly due to the local-scale heterogeneity, while the influence of local-scale heterogeneity on travel time gradually decreases over time. Layer-scale heterogeneity is more important than local-scale heterogeneity for simulating overall tracer travel time, suggesting that it would be more cost-effective to reduce the layer-scale parameter uncertainty in order to reduce predictive uncertainty in tracer transport. 相似文献