首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2548篇
  免费   74篇
  国内免费   24篇
安全科学   181篇
废物处理   151篇
环保管理   541篇
综合类   298篇
基础理论   586篇
环境理论   3篇
污染及防治   580篇
评价与监测   179篇
社会与环境   92篇
灾害及防治   35篇
  2023年   11篇
  2022年   19篇
  2021年   27篇
  2020年   26篇
  2019年   26篇
  2018年   61篇
  2017年   58篇
  2016年   76篇
  2015年   72篇
  2014年   70篇
  2013年   231篇
  2012年   108篇
  2011年   148篇
  2010年   114篇
  2009年   131篇
  2008年   127篇
  2007年   143篇
  2006年   133篇
  2005年   97篇
  2004年   85篇
  2003年   107篇
  2002年   71篇
  2001年   54篇
  2000年   53篇
  1999年   41篇
  1998年   39篇
  1997年   34篇
  1996年   33篇
  1995年   26篇
  1994年   34篇
  1993年   31篇
  1992年   21篇
  1991年   24篇
  1990年   13篇
  1989年   11篇
  1988年   16篇
  1987年   19篇
  1986年   13篇
  1985年   19篇
  1984年   12篇
  1983年   18篇
  1982年   19篇
  1981年   24篇
  1980年   13篇
  1979年   10篇
  1978年   6篇
  1977年   9篇
  1971年   6篇
  1957年   5篇
  1955年   5篇
排序方式: 共有2646条查询结果,搜索用时 546 毫秒
801.
802.
The COMPLEX I and COMPLEX II Gaussian dispersion models for complex terrain applications have been made available by EPA. Various terrain treatment options under IOPT(25) can be selected for a particular application, one of which [IOPT(25) = 1] is an algorithm similar to that of the VALLEY model. A model performance evaluation exercise involving three of the available options with both COMPLEX models was carried out using SF6 tracer measurements taken during worst-case stable impaction conditions in complex terrain at the Harry Allen Plant site in southern Nevada. The models did not reproduce observed concentrations on an event by event basis, as correlation coefficients for 1-h concentrations of 0-0.3 were exhibited. When observed and calculated cumulative frequency distributions for 1-h and 3-h concentrations were compared, a close correspondence between observations and concentrations calculated with COMPLEX I, IOPT(25) = 2 or 3 was noted; both options consistently overestimated observed concentrations. With IOPT(25) = 1, upper percentile (maximum) values in the calculated frequency distribution exceeded the corresponding IOPT(25) = 2 or 3 value by roughly a factor of 2, and observed values by 2.5-5. COMPLEX II typically produced maximum values 2-4 times as great as COMPLEX I for the same terrain treatment option. From these results it is concluded that: 1) the physically unrealistic sector-spread approach used in VALLEY and COMPLEX I under stable impaction conditions is a surrogate for wind direction variation, and 2) the doubling of the plume centerline concentration due to ground reflection under terrain impingement conditions that is included in IOPT(25) = 1 is inappropriate.

These findings were found to be consistent with an analysis of noncurrent observed and calculated SO2 χ/Q frequency distributions for 1, 3, and 24 hours near the Four Corners Plant in New Mexico. The comparison involved a four-year calculated χ/Q data set and a two-year observed χ/Q data set at the worst-case high terrain impact location near the plant.  相似文献   
803.
A great urgency has developed in the past few years within the U.S. EPA remediation program to perform treatability studies at Superfund (CERCLA) sites. The major reasons for this urgency is to ensure the selected treatment technology is applicable to the waste characteristics, and that Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup goals can be achieved. However, prior to conducting a treatability study, three critical issues must be resolved by the site manager. First, what scale and timing are appropriate? Second, should the treatability study be performed by a treatment technology vendor using proprietary equipment and processes, or can a generic study be performed? Third, should the study be performed in the field or should the waste be taken to the laboratory for testing? The objectives of the treatability study will have a major impact on how these issues are resolved. This paper discusses these major issues and provides information for the design and conduct of Superfund treatability programs.  相似文献   
804.
Non-methane hydrocarbon (NMHC) source profiles consisting of 35 hydrocarbon species were measured for vehicle and petroleum refinery emissions. Refueling emissions were found to be sensitive to the grade and volatility class of fuel and to be composed mainly of saturated hydrocarbons such as n-butane and 2-methy I butane. Unsaturated and aromatic hydrocarbons, which are released from the tailpipe of vehicles as products of combustion and unburned fuel, were more prevalent in roadway emissions comprising approximately 34 percent of the total NMHCs. Cold-start emissions were nearly indistinguishable from the roadway emission profile. The only significant differences were in toluene, ethylene and acetylene, which may be related to the efficiency of combustion when the vehicle is initially started. Saturated hydrocarbon distributions of the hot-soak profiles were found to be similar to refueling emissions. The only significant difference in the profiles was in the aromatic content, which may be related to the grade of the gasoline and the effectiveness of evaporative emission control devices. The temporal variation in refinery emissions was significant and may be related to variations in refinery activities such as the production and blending of feed stocks to produce different fuels.  相似文献   
805.
In November 1990, the Silicate Technology Corporation's (STC) proprietary process for treating soil contaminated with toxic semivolatile organic and inorganic contaminants was evaluated in a Superfund Innovative Technology Evaluation (SITE) field demonstration at the Selma Pressure Treating (SPT) wood preserving site in Selma, California. The SPT site was contaminated principally with pentachlorophenol (PCP) and arsenic, as well as lesser amounts of chromium and copper. Because of their importance when selecting a remedy for the site, PCP and arsenic were identified as critical analytes to evaluate the effectiveness of treatment.

Evaluation of STC's treatment process was based on contaminant mobility, measured by numerous leaching tests, and structural integrity of the solidified material, measured by physical, engineering, and morphological tests. An economic analysis was also performed, using cost information supplied by STC and supplemented by information generated during the demonstration.

Conclusions drawn from this SITE demonstration evaluation are: (1) the STC process can chemically stabilize contaminated soils similar to those at the Selma site that contain both semivolatile organic and inorganic contaminants; (2) PCP was successfully treated as demonstrated by total waste analysis; (3) heavy metals such as arsenic can be immobilized successfully based on various leach-test criteria; (4) the short-term physical stability of the treated waste was good, with unconfined compressive strengths (UCS) well above landfill solidification standards; (5) treatment resulted in a volume increase of 59 to 75 percent (68 percent average) and a slight increase in bulk density; and (6) the process is expected to cost approximately $190 to $360 per cubic yard when it is used to treat 15,000 cubic yards of waste similar to that found at the STC demonstration site, assuming that on-site, in-place disposal is performed.  相似文献   
806.
ABSTRACT

The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain realtime estimates of fugitive VOC emission rates.  相似文献   
807.
Abstract

Traffic noise is ubiquitous in many communities and is an important environmental concern, especially for persons located near major roadways. Several different methods are available to estimate noise levels resulting from roadway traffic. These include computational, graphical, and computer modeling techniques.

The prediction methodology presented here is a simplified technique that can be used for estimating noise resulting from traffic and for screening traffic noise impacts. This Traffic Noise Screening (TNS) approach consists of a series of traffic noise level prediction graphs developed for different roadway configurations. The graphs are based on the results from using the Federal Highway Administration (FHWA) STAMINA2.0 computerized noise prediction model for various scenarios. Data inputs to the TNS approach include roadway geometries, traffic volumes, vehicle travel speed, and centerline distance to the receptors.

The TNS graphs allow easy estimation of traffic noise levels for use in predicting traffic-related noise impacts. This TNS approach is not intended as a substitute for detailed modeling, such as with STAMINA2.0, but as a screening tool to aid in determining when detailed modeling may be necessary. If screening results indicate that noise estimates are significant, or if the scenario is rather complex, then additional, more detailed modeling can be performed.  相似文献   
808.
809.
Abstract

Air quality monitoring was conducted at a rural site with a tower in the middle of California’s San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/M2.5 Air Quality Study. Measurements at the surface and on a tower at 90 m were collected in Angiola, CA, from ecember 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   
810.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号