首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6101篇
  免费   21篇
  国内免费   58篇
安全科学   535篇
废物处理   140篇
环保管理   561篇
综合类   2127篇
基础理论   1053篇
环境理论   3篇
污染及防治   1047篇
评价与监测   315篇
社会与环境   378篇
灾害及防治   21篇
  2022年   42篇
  2021年   69篇
  2019年   42篇
  2018年   73篇
  2017年   67篇
  2016年   97篇
  2015年   67篇
  2014年   128篇
  2013年   386篇
  2012年   135篇
  2011年   198篇
  2010年   149篇
  2009年   183篇
  2008年   177篇
  2007年   201篇
  2006年   152篇
  2005年   128篇
  2004年   278篇
  2003年   294篇
  2002年   199篇
  2001年   186篇
  2000年   102篇
  1999年   82篇
  1998年   83篇
  1997年   57篇
  1996年   37篇
  1995年   115篇
  1994年   87篇
  1993年   77篇
  1992年   75篇
  1991年   67篇
  1990年   86篇
  1989年   69篇
  1988年   62篇
  1987年   61篇
  1986年   47篇
  1985年   49篇
  1984年   40篇
  1983年   56篇
  1982年   41篇
  1981年   48篇
  1979年   39篇
  1976年   39篇
  1919年   56篇
  1918年   51篇
  1917年   37篇
  1916年   62篇
  1915年   43篇
  1914年   78篇
  1913年   111篇
排序方式: 共有6180条查询结果,搜索用时 974 毫秒
341.
In Europe, the use of direct methods using lysimeters for measuring water and solute flow in soils increased in recent years. Large weighable lysimeters are best suitable for obtaining reliable data about seepage water quantity and quality. Field lysimeters – lysimeters built in directly in agriculturally used areas – of high technical standard allow a precise determination of the influence of different cropping systems on groundwater quality. They combine the advantages of true field conditions and laboratory possibilities of varying parameters, handling and maintenance. Due to the specific needs of each application the instrumentation varies. Based on general remarks on the advantages of precise weighing lysimeters four standardized lysimeter configurations are presented. Beside the specific needs of design and setup of lysimeter stations, there is need to define general requirements to enable comparable results based on standardized basic design and to reduce individual mistakes.  相似文献   
342.
Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4 +, NO2 ?, NO3 ?, PO4 3?), and selected major ions (SO4 2?) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.  相似文献   
343.
344.
The poor operational status of some wastewater treatment plants often result in the discharge of inadequately treated effluent into receiving surface waters. This is of significant public health concern as there are many informal settlement dwellers (ISDs) that rely on these surface waters for their domestic use. This study investigated the treatment efficiency of two independent wastewater treatment plants (WWTPs) in Durban, South Africa and determined the impact of treated effluent discharge on the physicochemical and microbial quality of the receiving water bodies over a 6-month period. Presumptive Escherichia coli isolates were identified using biochemical tests and detection of the mdh gene via PCR. Six major virulence genes namely eae, hly, fliC, stx1, stx2, and rfbE were also detected via PCR while antibiotic resistance profiles of the isolates were determined using Kirby-Bauer disc diffusion assay. The physicochemical parameters of the wastewater samples ranged variously between 9 and 313.33 mg/L, 1.52 and 76.43 NTUs, and 6.30 and 7.87 for COD, turbidity, and pH respectively, while the E. coli counts ranged between 0 and 31.2?×?103 CFU/ml. Of the 200 selected E. coli isolates, the hly gene was found in 28 %, fliC in 20 %, stx2 in 17 %, eae in 14 %, with stx1 and rfbE in only 4 % of the isolates. Notable resistance was observed toward trimethoprim (97 %), tetracycline (56 %), and ampicillin (52.5 %). These results further highlight the poor operational status of these WWTPs and outline the need for improved water quality monitoring and enforcement of stringent guidelines.  相似文献   
345.
346.
347.
348.
Reaeration coefficient (k 2) for River Atuwara, Ogun State, Nigeria was calculated from dissolved oxygen and biochemical oxygen demand data collected over period of 3 months covering the two prevailing climatic seasons in the country. Both the Akaike and Bayesian information criteria were used in the selection and analysis of ten models to identify the most suitable reaeration coefficient (k 2) model for Atuwara River. Models that passed the confidence limit were subjected to model evaluation using measures of agreement between observed and predicted data such as percent bias, Nash–Sutcliffe efficiency, and root mean square observation standard deviation ratio. The used approach yield better results than empirical models developed for local conditions while it is also useful in conserving scarce resources.  相似文献   
349.
Advances in process-based modelling of loads of nitrogen and phosphorus carried by rivers have created new possibilities to interpret time series of water quality data. We examined how model runs with constant anthropogenic forcing can be used to estimate and filter out weather-driven variation in observational data and, thereby, draw attention to other features of such data. An assessment of measured and modelled nutrient concentrations at the outlets of 45 Swedish rivers provided promising results for total nitrogen. In particular, joint analyses of observational data and outputs from the catchment model S-HYPE strengthened the evidence that downward trends in nitrogen were due to mitigation measures in agriculture. Evaluation of modelled and observed total phosphorus concentrations revealed considerable bias in the collection or chemical analysis of water samples and also identified weaknesses in the model outputs. Together, our results highlight the need for more efficient two-way communication between environmental modelling and monitoring.  相似文献   
350.
Quantification of fluxes of water into and out of terminal lakes like Basaka has fundamental challenges. This is due to the fact that accurate measurement and quantification of most of the parameters of a lake’s hydrologic cycle are difficult. Furthermore, quantitative understanding of the hydrologic systems and hence, the data-intensive modelling is difficult in developing countries like Ethiopia due to limitation of sufficient recorded data. Therefore, formulation of a conceptual water balance model is extremely important as it presents a convenient analytical tool with simplified assumptions to simulate the magnitude of unknown fluxes. In the current study, a conceptual lake water balance model was systematically formulated, solved, calibrated, and validated successfully. Then, the surface water and groundwater interaction was quantified, and a mathematical relationship developed. The overall agreement between the observed and simulated lake stage at monthly time step was confirmed based on the standard performance parameters (R 2, MAE, RMSE, E f). The result showed that hydrological water balance of the lake is dominated by the groundwater (GW) component. The net GW flux in recent period (post-2000s) accounts about 56 % of the total water inflow. Hence, GW plays a leading role in the hydrodynamics and existence of Lake Basaka and is mostly responsible for the expansion of the lake. Thus, identification of the potential sources/causes for the GW flux plays a leading role in order to limit the further expansion of the lake. Measurement of GW movement and exchange in the area is a high priority for future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号