首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16872篇
  免费   159篇
  国内免费   126篇
安全科学   828篇
废物处理   667篇
环保管理   1879篇
综合类   3263篇
基础理论   4349篇
环境理论   4篇
污染及防治   4048篇
评价与监测   1061篇
社会与环境   963篇
灾害及防治   95篇
  2022年   128篇
  2021年   104篇
  2020年   100篇
  2019年   106篇
  2018年   195篇
  2017年   234篇
  2016年   329篇
  2015年   269篇
  2014年   454篇
  2013年   1231篇
  2012年   492篇
  2011年   694篇
  2010年   620篇
  2009年   585篇
  2008年   675篇
  2007年   718篇
  2006年   589篇
  2005年   516篇
  2004年   680篇
  2003年   659篇
  2002年   556篇
  2001年   687篇
  2000年   475篇
  1999年   255篇
  1998年   217篇
  1997年   217篇
  1996年   209篇
  1995年   286篇
  1994年   276篇
  1993年   213篇
  1992年   223篇
  1991年   202篇
  1990年   230篇
  1989年   209篇
  1988年   181篇
  1987年   186篇
  1986年   170篇
  1985年   167篇
  1984年   159篇
  1983年   153篇
  1982年   135篇
  1981年   125篇
  1980年   116篇
  1979年   129篇
  1978年   100篇
  1977年   114篇
  1975年   94篇
  1974年   91篇
  1973年   104篇
  1913年   112篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
941.
Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3?) leaching. We sought to assess the trade-offs in NH3 and NO3? losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3? leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha?), and the lowest emissions were from unamended soil (<1 kg NH-N ha?1). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3? leaching losses were small (<25 kg NO3-N ha?1) and similar between treatments, except for the first winter when NO3? leaching was fivefold greater with injection. Because NO3? leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3? leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N.  相似文献   
942.
A series of miscible-displacement experiments was conducted to examine the retention and transport behavior of oocysts in natural porous media. Three soils and a model sand were used that differed in physical and geochemical properties. Transport behavior was examined under various treatment conditions to help evaluate retention mechanisms. Significant retention of oocysts was observed for all media despite the fact that conditions were unfavorable for physicochemical interactions with respect to DLVO theory. The magnitude of retention was not influenced significantly by alterations in solution chemistry (reduction in ionic strength) or soil surface properties (removal of soil organic matter and metal oxides). On the basis of the observed results, it appears that retention by secondary energy minima or geochemical microdomains was minimal for these systems. The porous media used for the experiments exhibited large magnitudes of surface roughness, and it is suggested that this surface roughness contributed significantly to oocyst retention.  相似文献   
943.
944.
945.
946.
947.
To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H(2) production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth's surface and use water as the source of electrons to reduce protons. The H(2) production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H(2) for extended periods even in the presence of evolved O(2). This review summarizes our efforts to improve the rate of photobiological H(2) production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H(2) also are discussed.  相似文献   
948.
The classic Microtox® solid phase assay (MSPA) based on the inhibition of light production of the marine bacteria recently renamed Aliivibrio fischeri suffers from various bias and interferences, mainly due to physico-chemical characteristics of the tested solid phase. To precisely assess ecotoxicity of sediments, we have developed an alternative method, named Microtox® leachate phase assay (MLPA), in order to measure the action of dissolved pollutants in the aqueous phase. Two hypotheses were formulated to explain the observed difference between MSPA and MLPA results: a real ecotoxicity of the solid phase or the fixation of bacteria to fine particles and/or organic matter. To estimate the latter, flow cytometry analyses were performed with two fluorochromes (known for their ability to stain bacterial DNA), allowing correction of MSPA measurements and generation of new (corrected) IC50. Comparison of results of MLPA with the new IC50 MSPA allows differentiating real ecotoxic and fixation effect in classic MSPA especially for samples with high amount of fines and/or organic matter.  相似文献   
949.
Tin or stannous (Sn2+) compounds are used as catalysts, stabilizers in plastic industries, wood preservatives, agricultural biocides and nuclear medicine. In order to verify the Sn2+ up-take and toxicity in yeast cells we utilized a multi-elemental analysis known as particle-induced X-ray emission (PIXE) along with cell survival assays and quantitative real-time PCR. The detection of Sn2+ by PIXE was possible only in yeast cells in stationary phase of growth (STAT cells) that survive at 25 mM Sn2+ concentration. Yeast cells in exponential phase of growth (LOG cells) tolerate only micro-molar Sn2+ concentrations that result in intracellular concentration below of the method detection limit. Our PIXE analysis showed that STAT XV185-14c yeast cells demonstrate a significant loss of intracellular elements such as Mg, Zn, S, Fe and an increase in P levels after 1 h exposure to SnCl2. The survival assay showed enhanced tolerance of LOG yeast cells lacking the low-affinity iron and zinc transporters to stannous treatment, suggesting the possible involvement in Sn2+ uptake. Moreover, our qRT-PCR data showed that Sn2+ treatment could generate reactive oxygen species as it induces activation of many stress-response genes, including SOD1, YAP1, and APN1.  相似文献   
950.
Rubio MA  Lissi E  Herrera N  Pérez V  Fuentes N 《Chemosphere》2012,86(10):1035-1039
Phenol, nitrophenols and dinitrophenols were measured in air and dews in downtown Santiago de Chile. In both systems, phenol, 2-nitrophenol (2-NP), and 4-nitrophenol (4-NP) were the compounds found in higher concentrations and with major frequency. Temporal profiles in air were compatible with a significant direct incorporation from mobile sources. The data can be explained in terms of a faster removal of 2-NP than 4-NP, with the former predominating in fresh air masses and 4-NP in more aged samples. All these compounds, as well as dinitrophenols, were found in dew waters. Simultaneous measurements in air and dew indicate that phenol present in dew exceeds that expected in equilibrated samples, while the opposite occurs with 4-NP. This last result is associated to mass transfer limitations for the highly water soluble nitroderivative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号