首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   101篇
  国内免费   213篇
安全科学   79篇
废物处理   14篇
环保管理   38篇
综合类   481篇
基础理论   87篇
污染及防治   16篇
评价与监测   32篇
社会与环境   38篇
灾害及防治   31篇
  2024年   6篇
  2023年   15篇
  2022年   49篇
  2021年   42篇
  2020年   50篇
  2019年   41篇
  2018年   49篇
  2017年   34篇
  2016年   26篇
  2015年   46篇
  2014年   35篇
  2013年   41篇
  2012年   52篇
  2011年   43篇
  2010年   48篇
  2009年   45篇
  2008年   38篇
  2007年   37篇
  2006年   31篇
  2005年   23篇
  2004年   13篇
  2003年   9篇
  2002年   12篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   8篇
  1994年   1篇
  1992年   3篇
排序方式: 共有816条查询结果,搜索用时 31 毫秒
171.
郝晨林  邓义祥  富国  乔飞 《环境科学研究》2020,33(11):2467-2473
环境背景条件变化会导致湖泊ρ(Chla)与环境因子响应关系发生变化.采用低通时序滤波轨线方法可以方便地识别ρ(Chla)与环境因子响应关系的时间转折点,将长时间序列数据进行分段,从而建立分段回归函数,为研究环境因子与湖泊ρ(Chla)的因果关系提供了一种新的思路.以太湖为研究对象,采用低通时序滤波轨线方法,评估了2001—2018年太湖的ρ(Chla)与营养盐〔ρ(TN)、ρ(TP)〕以及氮磷比〔ρ(TN)/ρ(TP)〕的变化过程,研究了年均气温、滞留时间对产藻效率〔ρ(Chla)/ρ(TP)〕的影响过程.结果表明:①2006年、2011年为太湖营养过程轨线的两个时间转折点,将太湖的营养过程轨线分为3段.第1段为污染阶段(2001—2006年),太湖的ρ(TN)、ρ(TP)、ρ(Chla)同步升高,于2006年达到第一个峰值;第2段为修复阶段(2006—2011年),太湖的ρ(TN)、ρ(TP)、ρ(Chla)同步降低,于2011年达到谷值;第3段为富营养化加剧阶段(2011—2018年),太湖的ρ(TN)呈下降趋势,ρ(TP)与ρ(Chla)同步升高,至今未出现转折点.②太湖藻类生长的限值因子为ρ(TP),2011年之后氮磷比进入浮游藻类适宜生长区,为蓝藻暴发提供了条件.③2011—2018年产藻效率增长了51%,且目前仍在升高未出现转折点,气温升高可能是主要原因.④依据2011—2018年的滤波值建立ρ(Chla)-ρ(TP)的函数预测,为控制蓝藻暴发〔ρ(Chla) < 10 mg/m3〕,太湖的ρ(TP)需要控制在52 μg/L以下.⑤2006年后,太湖的滞留时间呈现缩短趋势,对藻类的繁殖形成抑制,但滞留时间不是影响产藻效率的关键因子.研究显示:自2006年太湖流域实施一系列生态修复工程后,湖泊氮浓度明显降低,但由于流域氮磷排放量较大而且湖体沉积物中累积磷含量较高,致使水体营养盐水平仍未降到能显著抑制蓝藻生长的水平;目前气温升高趋势仍在持续,太湖的控藻形势严峻,为摆脱气候变暖对蓝藻水华趋势的决定作用,应当在控氮基础上加大控磷的力度,同时更多考虑水文调节、生物修复、加强打捞等措施.   相似文献   
172.
长江流域上游地区是我国“三磷”(磷矿、磷化工企业和磷石膏库)最为集中的区域,总磷污染尤为严重.为保障长江流域水环境安全,支撑长江经济带可持续发展,从分析长江上游“三磷”污染状况出发,剖析总磷污染成因,提出“三磷”污染控制对策建议.结果表明,长江流域上游地区总磷污染成因主要包括:磷矿资源丰富,长期开采对上游水环境产生显著影响;围绕磷矿开采的磷化工产业发展迅速,但管理薄弱导致总磷超标排放;存量磷石膏临河不当处置与堆存,环境污染与安全隐患大.针对总磷污染成因,按照“重点突出,精准施策”原则,以长江流域上游地区“三磷”集中片区为重点开展综合整治,提出几点对策建议:①重点加强沱江上游德阳段绵远河、石亭江,乌江上游贵州段瓮安河、洋水河和清水江,湖北省宜昌-兴山-神农架一线和钟祥-南漳一线三个片区的磷矿治理;②推动绵远河、石亭江、乌江、香溪河流域等涉磷工业园区/工业集中区的技术改造升级,促进磷化工产业绿色发展;③加强四川省(沱江)、贵州省(乌江)、湖北省(香溪河)等磷石膏堆场密集分布区域的规范化综合管理;④以法规和标准为准绳,加快完善涉磷污染源监管系统.   相似文献   
173.
本研究建立了光伏行业生命周期碳排放清单,并在处置阶段对不同处置情景的碳排放进行比较.通过现场、资料调研和工艺研发应用的方式,获得光伏行业生产、使用、处置阶段及三个情景的资源、能源的输入/输出和污染物排放数据.结果表明:光伏行业碳排放集中在生产阶段,其中又以高纯多晶硅生产过程的碳排放最高;使用阶段碳排放较小,仅为生产阶段的3%;电耗是最主要的碳排放因素,占生产和使用阶段碳排放的64.98%.处置阶段的3种情景的碳排放由大到小依次是填埋 > 拆解 > 热解,除了填埋略微增加碳排放外,拆解和热解都能显著降低行业碳排放,可分别降低6.03%和33.59%.研究显示采用热解回收技术的光伏组件生命周期单位发电量碳排放强度,不仅低于同类研究,还远低于我国当前电力结构的碳排放水平,发展光伏行业可实现环境与能源双赢.  相似文献   
174.
鸡粪厌氧发酵产沼气中H2S含量高,在发电或提纯制备生物燃气前需要对其进行去除.开展批次鸡粪发酵试验,向发酵瓶中通入微量空气,通过生物氧化作用去除H2S.试验以连续稳定运行90d的中温厌氧罐出料为接种污泥,通入7~50mL/gVS的空气.结果表明,空气通入显著地降低了沼气中的H2S浓度,空气通入量为30mL/gVS的实验组平均脱硫效率最高,达到62%.同时,该空气通入条件下累积甲烷产量达到335mL/gVS,相较于空白累积甲烷产量提升了78.6%.通入微量空气的生物脱硫方法具有工艺简单和高效脱除H2S的应用前景.  相似文献   
175.
采用中试ASBR反应器(530 L),以逐步提高Cl~-浓度的方式考察了厌氧氨氧化菌(An AOB)处理高盐废水的脱氮特性.结果表明,采用逐步盐度驯化的方式,An AOB可适应高盐度(Cl~-浓度10 000 mg·L~(-1))环境进行高效脱氮(TN去除率高达92. 3%).其中,在Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)两个梯度内,反应器脱氮性能受到了较大影响,但随着驯化过程的持续进行可逐步恢复.修正的Boltzmann模型能较为准确地拟合An AOB受到不同盐度抑制后的活性恢复过程,相关系数R~2均在0. 96以上.得到的Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)时的恢复中间值tc分别为28. 765 d和44. 495 d,NRRmax分别为0. 145 kg·(m~3·d)~(-1)和0. 212 kg·(m~3·d)~(-1),NRRmin分别为0. 021 kg·(m~3·d)~(-1)和0. 085 kg·(m~3·d)~(-1).高盐度驯化后,厌氧氨氧化菌仍主要为Candidatus Brocadia和Candidatus Jettenia(其丰度分别是14. 76%和2. 7%),且污泥颗粒化程度和污泥密度均有不同程度的提高,污泥呈红褐色.  相似文献   
176.
近几十年全球人口剧增,粮食生产及燃料消耗都增加了地表水中的氮负荷,而地表水是连接大陆氮库和海洋氮库的重要通道,地表水中的硝酸盐的增加将直接导致河口及沿海硝酸盐浓度的增加,因此研究近海河流的氮污染情况、确定影响因素将会为近海营养物质的控制及水环境管理提供重要信息.以环渤海地区的入海河流为主要研究对象,通过收集公开数据建立环渤海地表水硝酸盐数据库集成分析,研究入海河流的水体硝酸盐的时空污染特征及其与各影响因素之间的关系.结果表明,环渤海区域地表水中硝酸盐浓度的变化范围在0.0~76.4 mg·L~(-1),与溶解氧、总氮、总磷和电导率有显著的相关关系(p=0.01).在空间变化方面,黄河下游及浑太河上游流域硝酸盐污染较为严重.在除去来自城市污废水排放的人工河道带来的硝酸盐浓度异常值后,丰水期(平均浓度4.55 mg·L~(-1))与平水期(平均浓度5.39 mg·L~(-1))的硝酸盐浓度的平均水平较枯水期(平均浓度4.03 mg·L~(-1))更高,且浓度的变化范围(丰水期:0.00~34.90 mg·L~(-1);平水期:0.00~31.00 mg·L~(-1))亦大于枯水期(0.00~25.64 mg·L~(-1)).影响因素方面,硝酸盐浓度与降水量有显著相关性(r=0.122,p=0.01).土地利用相关性研究表明耕地与建设用地是硝酸盐的主要来源,林地和草地对硝酸盐污染有改善作用.硝酸盐的入海通量约为33.4×10~4t·a-1.  相似文献   
177.
岩溶作用产生的无机碳可以在水生植物、微生物等作用下形成有机质,转化为较稳定的内源有机碳,这为寻找全球遗漏碳汇提供了新的突破口,而加强对岩溶区有机质的溯源研究是重要手段.为探究金佛山岩溶地表河溶解态、颗粒态和沉积物正构烷烃的含量、组分及来源,于2017年3月20日、9月26日分别在石钟溪上、中、下游进行采样,并利用气相色谱-质谱联用仪(GC-MS)对三相态正构烷烃的组分进行定量分析.结果显示,旱季溶解态、颗粒态和沉积物正构烷烃的平均含量分别为737 ng·L~(-1)、6108 ng·L~(-1)和7149 ng·g~(-1),雨季三者的平均含量分别为7129 ng·L~(-1)、8146 ng·L~(-1)和6213 ng·g~(-1).正构烷烃的含量整体表现为雨季高于旱季,以溶解态正构烷烃表现得最为显著,这主要由外源高等植物输入增多所致.旱季上、下游正构烷烃含量差异明显,以沉积物正构烷烃表现得最为显著,自上而下整体保持微升态势;雨季外源输入量较大,差异性减弱,整体变幅较小.不同季节降雨和气温的变化导致水动力条件、浊度及水温的不同,深刻地影响着不同相态和不同河段正构烷烃的来源和迁移.整体上,随着海拔降低,高等植物贡献度降低,水生植物和低等生物贡献度增高.当水动力条件较弱和浊度较低时,造成内源溶解有机质增多,同时会出现溶解态至颗粒态乃至沉积物的缓慢沉降迁移.  相似文献   
178.
不同雨强下黄土裸坡水-沙-氮磷流失耦合模拟   总被引:5,自引:0,他引:5  
采用室内人工模拟降雨试验研究6种雨强3种坡度下黄土裸露坡面水沙及氮磷养分流失规律.结果表明:1)降雨强度与土壤入渗速率,坡面产流产沙量的线性拟合决定系数均大于0.8,有较好的正相关关系;2)25°黄土坡面下:NO3--N初始浓度较高,随降雨历时呈波动性减少,具有明显的初期冲刷效应;NH4+-N初始流失浓度由90mm/h雨强下0.6057mg/L增至120mm/h的1.3076mg/L,但其浓度随降雨历时均不断减小;TN流失浓度在雨强为90,105和120mm/h时分别为0.6056,0.8011和1.3076mg/L,随雨强增大而增大;TP初始流失浓度在105mm/h时最大,90mm/h时最小,且不同雨强下TP流失浓度相互交错,不稳定;3)养分流失与坡面产流量具有较强的线性相关性,与产沙量呈显著的幂函数关系.15°坡面时,氮素流失在6种雨强下均以颗粒态为主,平均约占72%,但在雨强增大过程中,颗粒态所占比例先减少后增加;而磷素流失颗粒态所占比例均大于90%,与降雨强度和坡度均没有直接关系.  相似文献   
179.
南昌市生活垃圾卫生填埋生命周期评价   总被引:1,自引:0,他引:1  
卫生填埋法是当前我国处理城市生活垃圾的主要方式,依据生命周期评价理论及分析框架,借助eFootprint软件对南昌市卫生填埋法处理城市生活垃圾进行生命周期分析以期找出各处理过程的突出环境影响及原因并提出针对性改善建议.结果表明:卫生填埋法处理城市生活垃圾的主要环境影响类型为全球变暖(GWP)、初级能源消耗(PED)、水资源消耗(WU)、酸化(AP)、光化学臭氧合成(POFP)、生态毒性(ET)、淡水富营养化(FEP);电力盈余作为副产品参与分配使得各环境影响类型指标潜值减小,其中最突出的是PED,其次是WU;收集运输过程最突出的环境影响类型为POFP,其次依次为ET、PED、FEP,该过程应减少柴油运输车使用,适量引用节能环保或清洁能源汽车;卫生填埋过程在垃圾处理各过程中产生的环境污染最大,该过程最突出的环境问题是AP,其次是GWP,再者是PED、FEP、ET,该过程应改善工艺以提升填埋气收集效率,采用清洁能源减少柴油使用;填埋气发电过程因填埋气发电产生盈余电力,实现能量回收后对环境的正效益,该过程应提升填埋气收集以及燃烧发电效率;渗滤液处理过程的环境影响较小,主要表现为WU和FED,需在注重节能的同时优化升级处理工艺,改善当前处置工艺存在的弊端并排除隐患.  相似文献   
180.
常州市冬季大气污染特征及潜在源区分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解常州市冬季大气污染特征,对2013—2015年常州市冬季PM2.5、PM10、SO2、NO2、CO数据进行分析,并结合HYSPLIT 4.9模式研究不同气团来源对常州市各污染物浓度的影响及潜在污染源区分布特征.结果表明,常州市冬季以PM2.5污染为主,其占冬季首要污染物的90%以上,冬季PM2.5小时浓度对应的空气质量级别以良和轻度污染出现频次最多,冬季的ρ(PM2.5)对ρ(PM2.5)年均值的贡献率高达37.4%,不完全燃烧是颗粒物的一个重要来源.冬季ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的日变化均呈双峰分布,两个峰值分别出现在交通的早高峰和晚高峰附近.ρ(NO2)在晚高峰明显大于早高峰,而ρ(SO2)和ρ(CO)表现为早高峰大于晚高峰.常州市CO/NOx和SO2/NOx的分析结果表明,常州市交通源的贡献明显,点源对常州市的空气质量的影响也较大.1和6 h的ρ(PM2.5)梯度变化可判识细颗粒物的爆发性增长.冬季常州市受到西北、西和西南等地区的大陆性气流影响较大,其对应的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)平均值相对较高,且对应的污染轨迹出现概率较大.偏东方向的气流由于移动速度慢,不利于污染物扩散易造成污染累积,导致ρ(PM2.5)、ρ(SO2)和ρ(NO2)相对较高.WPSCF(源区分布概率)高值区(>0.5)集中于从芜湖至上海的长江中下游区域和杭州湾区域.PM2.5、PM10、SO2、NO2和CO潜在源区存在较大差异性,NO2、SO2和CO本地化的潜在贡献较PM2.5和PM10更明显.此外,受船舶等影响海洋源区对NO2、SO2和CO的潜在贡献较大.研究显示,长三角区域的大气污染物以本地污染为主,但远距离污染输送贡献也不容忽视.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号