首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   22篇
  国内免费   124篇
安全科学   28篇
废物处理   11篇
环保管理   26篇
综合类   171篇
基础理论   60篇
污染及防治   115篇
评价与监测   10篇
社会与环境   12篇
灾害及防治   26篇
  2024年   1篇
  2023年   6篇
  2022年   25篇
  2021年   12篇
  2020年   24篇
  2019年   15篇
  2018年   8篇
  2017年   18篇
  2016年   20篇
  2015年   25篇
  2014年   21篇
  2013年   35篇
  2012年   22篇
  2011年   27篇
  2010年   14篇
  2009年   26篇
  2008年   20篇
  2007年   20篇
  2006年   24篇
  2005年   14篇
  2004年   11篇
  2003年   7篇
  2002年   14篇
  2001年   7篇
  2000年   9篇
  1999年   12篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
排序方式: 共有459条查询结果,搜索用时 0 毫秒
351.
对饮食娱乐服务等行业在城市区域的污染戍因进行了剖析,并时此提出了强化环境管理的对策。  相似文献   
352.
Heavy metal pollution affects soil ecological function. Biochar and compost can effectively remediate heavy metals and increase soil nutrients. The effects and mechanisms of biochar and compost amendments on soil nitrogen cycle function in heavy-metal contaminated soils are not fully understood. This study examined how biochar, compost, and their integrated use affected ammonia-oxidizing microorganisms in heavy metal polluted soil. Quantitative PCR was used to determine the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB). Ammonia monooxygenase (AMO) activity was evaluated by the enzyme-linked immunosorbent assay. Results showed that compost rather than biochar improved nitrogen conversion in soil. Biochar, compost, or their integrated application significantly reduced the effective Zn and Cd speciation. Adding compost obviously increased As and Cu effective speciation, bacterial 16S rRNA abundance, and AMO activity. AOB, stimulated by compost addition, was significantly more abundant than AOA throughout remediation. Correlation analysis showed that AOB abundance positively correlated with NO3?-N (r = 0.830, P < 0.01), and that AMO activity had significant correlation with EC (r = -0.908, P < 0.01) and water-soluble carbon (r = -0.868, P < 0.01). Those seem to be the most vital factors affecting AOB community and their function in heavy metal-polluted soil remediated by biochar and compost.  相似文献   
353.
本文论述了现行职称评聘制度存在的主要问题。指出了深化职称评聘制度改革的必要 性,提出了深化职称评聘制度改革的几点思考。  相似文献   
354.
O3浓度升高对麦田土壤碳、氮含量和酶活性的影响   总被引:1,自引:0,他引:1  
近地层O3作为全球最重要的大气污染物之一,其对作物的生长发育、土壤酶活性、土壤碳、氮的影响机制已成为人们关注的重要问题。采用开顶式气室(OTCs)法模拟研究O3浓度升高对冬小麦土壤碳、氮含量和酶活性的影响。结果表明,O3浓度升高导致麦田0~10 cm和10~20 cm土层的全碳(TC)和全氮(TN)含量呈现出下降的趋势。O3浓度升高对土壤酶活性也有影响。在冬小麦灌浆期,O3胁迫可促进土壤脱氢酶活性提高。当O3浓度为120 nL·L-1时,0~10 cm、10~20 cm和20~40 cm土层的脱氢酶活性分别比对照处理提高59.4%、51.5%和22.2%。O3胁迫对土壤转化酶活性的影响随着冬小麦生长期和土壤采样深度的不同而发生变化。在冬小麦拔节期,O3处理对不同土层脲酶活性的影响没有达到显著差异水平,但是在灌浆期,20~40 cm土层的脲酶活性随着O3浓度的增加而提高,在120 nL·L-1浓度O3处理下脲酶活性比对照处理提高24.6%。在O3胁迫条件下土壤转化酶活性与土壤全碳含量、土壤脲酶活性与土壤全氮含量均呈现出显著的正相关关系。  相似文献   
355.
臭氧污染胁迫下植物的抗氧化系统调节机制   总被引:1,自引:0,他引:1  
工业和农业的快速发展导致近地层O3浓度不断提高,这对陆地生态系统的动物、植物、微生物和人类健康造成伤害。O3对植物的影响尤其是对农作物的影响将关系到世界粮食的安全生产。O3污染胁迫可诱导植物产生活性氧物质,破坏植物的膜系统,影响植物的光合作用等正常生理功能。植物在自然适应过程中,可形成一套抗氧化机制来缓解O3胁迫伤害。综述了国内外近年来有关O3胁迫下植物抗氧化系统调节机制的研究进展,包括植物通过调节体内的抗氧化酶活性和非酶类物质含量来缓解O3对植物伤害的机制。O3污染胁迫下植物可调节其叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)和单脱氢抗坏血酸还原酶(MDAR)等抗氧化酶的活性。抗坏血酸(AsA)、类胡萝卜素(Car)和谷胱甘肽(GSH)等非酶类物质在清除O3胁迫产生活性氧方面具有重要的作用。另外,根据目前的研究进展,提出了一些需要继续深入探讨的问题。  相似文献   
356.
乌梁素海是内蒙古高原干旱区最典型的浅水草型湖泊,湖滨带芦苇分布广袤,其收割方式是在冬季湖泊结冰后将冰面上芦苇收割,冰面下芦苇则留存在水中,而水下部分的分解是造成湖泊生物淤积的重要原因,且分解过程中营养元素的释放亦加剧了湖泊富营养化。通过分解袋法研究了湖泊水面下芦苇枯落物的分解动态及营养元素的释放过程,并探讨了芦苇枯落物分解的影响因素。结果表明:1)芦苇枯落物分解270 d后质量残留率为52.44%,分解速率常数为0.002 68 d~(-1),其分解50%需要0.83 a,分解95%需要3.19 a;2)芦苇枯落物分解过程中,N元素的分解状态呈现释放-分解-再释放的规律,P元素和C元素均处于持续释放的分解状态;3)芦苇枯落物分解期间,分解速率和营养元素含量动态受枯落物自身质量和环境因子共同影响,且环境因子(温度、溶解氧、pH值)与芦苇枯落物分解速率及元素释放动态相关性显著。研究表明,芦苇枯落物分解释放大量营养物质,对湖泊富营养化有一定的贡献,要进一步加强芦苇植物的收割以减轻植物腐烂分解对湖泊造成的二次污染,减少生物淤积作用。  相似文献   
357.
聚合硫酸铝的制备及形态特征   总被引:8,自引:0,他引:8  
以Al2 (SO4) 3·1 8H2 O为原料 ,采用一次加碱法 ,高速剪切合成聚合硫酸铝 (PAS) ,研究碱化度 (B)对铝离子形态的影响 .采用混凝实验比较AS ,PAC ,PAS的混凝效果 ,测定处理后水中残留铝的含量 .结果表明 :相同B值条件下 ,PAS的Ala 少于PAC的Ala 含量 ,Alb 含量与PAC基本持平 ,Alc 含量大于PAC的Alc 含量 ;PAS的pH适用范围宽 ,絮体沉降性能强 ,残留铝量低 .  相似文献   
358.
改性沸石去除地下水中铁锰实验研究   总被引:2,自引:1,他引:1  
测定了2种改性沸石的基本特性,并选取0.6 m层高的交换柱,通过动态试验,研究其分别用于除铁和除锰的工艺性能。实验结果表明,2种沸石质量全交换容量分别为578.2 mmol/kg和722.2 mmol/kg;产水水质均能达到饮用水标准:含铁量≤0.3 mg/L,含锰量≤0.1 mg/L;减少进水中铁锰含量(≤2 mg/L)和降低运行流速(≤20 m/h),都有利于提高工作交换容量,但流速对除铁沸石影响较小;再生剂为1 mol/L的NaCl,再生速率1 m/h条件下,每升除铁沸石再生剂用量为1.2 L,洗脱率(再生废液中目标离子含量与原水中过滤时的去除量之比)达0.95,比耗(再生剂用量与工作交换容量之比)为16,每升除锰沸石再生剂用量为1.6 L,洗脱率达0.8,比耗为16。  相似文献   
359.
We developed a coupled water–oil simulation model to simulate the migration and transformation of petroleum-derived contaminants in the soil of the Xifeng oil field. To do so, we used the HYDRUS-2D model, which simulates the diffusion, adsorption or desorption, and microbial degradation of petroleum-derived hydrocarbons in the soil–water system. The saturated soil hydraulic conductivity of petroleum-derived pollutants was 0.05 cm?day?1, which is about 1 to 2 % of the soil moisture permeability coefficient. Our numerical simulation results show that spilled crude oil was mainly concentrated in the surface horizons of the soil. The organic pollutant concentration tended to be highest nearest to the pollution source. The pollutant migration was generally concentrated within the top 20 to 30 cm of the soil, with the maximum concentration in the top 5 cm of the soil. With passing time, the pollutant accumulation increased and the adsorption and degradation functions reached a dynamic balance with the input rate at depths greater than 30 cm below the soil surface. The oil-derived pollutants totaled 50 to 100 mg?kg?1 under the dynamic balance condition, which occurred after 20 to 30 years. The petroleum-derived pollutant concentration in the loess soil was inversely correlated with the horizontal distance from the oil well, and the concentration decreased greatly at a distance greater than 40 m from the well.  相似文献   
360.
• Structure of multi-trophic microbial groups were analyzed using DNA metabarcoding. • Discontinuity and trophic interactions were observed along the dam-fragmented river. • C, N and P cycles are driven by top-down and bottom-up forces of microbial food web. • Pelagic-benthic coupling may intensify nutrient accumulation in the river system. Cascade dams disrupt the river continuum, altering hydrology, biodiversity and nutrient flux. Describing the diversity of multi-trophic microbiota and assessing microbial contributions to the ecosystem processes are prerequisites for the restoration of these aquatic systems. This study investigated the microbial food web structure along a cascade-dammed river, paying special attention to the multi-trophic relationships and the potential role of pelagic-benthic coupling in nutrient cycles. Our results revealed the discontinuity in bacterial and eukaryotic community composition, functional group proportion, as well as α-diversity due to fragmentation by damming. The high microbial dissimilarity along the river, with the total multi-trophic β-diversity was 0.84, was almost completely caused by species replacement. Synchronization among trophic levels suggests potential interactions of the pelagic and the benthic groups, of which the β-diversities were primarily influenced by geographic and environmental factors, respectively. Dam-induced environmental variations, especially hydrological and nutrient variables, potentially influence the microbial food web via both top-down and bottom-up forces. We proposed that the cycles of carbon, nitrogen and phosphorus are influenced by multi-trophic groups through autotrophic and heterotrophic processes, predator–prey relationships, as well as the release of nutrients mainly by microfauna. Our results advance the notion that pelagic-benthic trophic coupling may intensify the accumulation of organic carbon, ammonium and inorganic phosphorus, thereby changing the biogeochemical patterns along river systems. As a consequence, researchers should pay more attention to the multi-trophic studies when assessing the environmental impacts, and to provide the necessary guidance for the ecological conservation and restoration of the dam-regulated systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号