首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   35篇
  国内免费   301篇
安全科学   43篇
废物处理   60篇
环保管理   46篇
综合类   385篇
基础理论   145篇
污染及防治   316篇
评价与监测   41篇
社会与环境   28篇
灾害及防治   21篇
  2024年   1篇
  2023年   13篇
  2022年   48篇
  2021年   35篇
  2020年   22篇
  2019年   25篇
  2018年   36篇
  2017年   32篇
  2016年   57篇
  2015年   53篇
  2014年   48篇
  2013年   75篇
  2012年   59篇
  2011年   57篇
  2010年   54篇
  2009年   52篇
  2008年   56篇
  2007年   39篇
  2006年   43篇
  2005年   28篇
  2004年   26篇
  2003年   27篇
  2002年   19篇
  2001年   29篇
  2000年   18篇
  1999年   12篇
  1998年   27篇
  1997年   22篇
  1996年   13篇
  1995年   13篇
  1994年   6篇
  1993年   12篇
  1992年   11篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1983年   1篇
排序方式: 共有1085条查询结果,搜索用时 0 毫秒
991.
A series of nitrogen-doped CoAlO (N-CoAlO) were constructed by a hydrothermal route combined with a controllable NH3 treatment strategy. The effects of NH3 treatment on the physico-chemical properties and oxidation activities of N-CoAlO catalysts were investigated. In comparison to CoAlO, a smallest content decrease in surface Co3+ (serving as active sites) while a largest increased amount of surface Co2+ (contributing to oxygen species) are obtained over N-CoAlO/4h among the N-CoAlO catalysts. Meanwhile, a maximum N doping is found over N-CoAlO/4h. As a result, N-CoAlO/4h (under NH3 treatment at 400°C for 4 hr) with rich oxygen vacancies shows optimal catalytic activity, with a T90 (the temperature required to reach a 90% conversion of propane) at 266°C. The more oxygen vacancies are caused by the co-operative effects of N doping and suitable reduction of Co3+ for N-CoAlO/4h, leading to an enhanced oxygen mobility, which in turn promotes C3H8 total oxidation activity dominated by Langmuir-Hinshelwood mechanism. Moreover, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) analysis shows that N doping facilities the decomposition of intermediate species (propylene and formate) into CO2 over the catalyst surface of N-CoAlO/4h more easily. Our reported design in this work will provide a promising way to develop abundant oxygen vacancies of Co-based catalysts derived from hydrotalcites by a simple NH3 treatment.  相似文献   
992.
Environmental Science and Pollution Research - Mn-Ce mixed oxides were prepared using a simple, facile, and high yielding co-precipitation method. The effects of the proportion of Mn/Ce and the...  相似文献   
993.
Li  Danping  Qiu  Ran  Li  Cunfang  Song  Yazhi  Zhang  Bo 《Environmental geochemistry and health》2022,44(9):3081-3100
Environmental Geochemistry and Health - The environmental stressors associated with the cross-provincial transfer of coal resource-based enterprises (CREs) have become a critical concern for the...  相似文献   
994.
Environmental Science and Pollution Research - We expected to explore the associations of hearing loss and hearing thresholds at different frequencies with total and cause-specific mortality. In...  相似文献   
995.
Xie B  Zhang H  Cai P  Qiu R  Xiong Y 《Chemosphere》2006,63(6):956-963
BiVO4 powder with monoclinic structure was prepared and used as a visible-light catalyst simultaneously for the photooxidation of phenol and the photoreduction of Cr(VI). The photocatalytic efficiency was found to be rather low for either single phenol solution or single Cr(VI) solution. However, the photocatalytic reduction of Cr(VI) and photocatalytic oxidation of phenol proceed more rapidly for the coexistence system of phenol and Cr(VI) than for the single process, showing synergetic effect between the oxidation and reduction reactions. For the simultaneous photocatalytic reduction-oxidation process, the first-order kinetic constant of phenol degradation was 0.0314 min-1, being about six times higher than that for the photocatalytic process of single phenol. This result reveals the feasibility of using Cr(VI) as the electron scavenger of mBiVO4-mediated photocatalytic process of phenol degradation, and gives us an enlightenment to employ other semiconductor with a better visible light response but with a more positive band edge to efficiently degrade organic pollutants. This is the first report for simultaneous photocatalytic reduction of Cr(VI) and removal of phenol under visible light irradiation using photocatalyst mBiVO4.  相似文献   
996.
Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250–300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.  相似文献   
997.
In this research, the thermal properties and crystallization behavior of novel poly(hexamethylene succinate-co-6 mol% butylene succinate) (PHBS) and its homopolymer poly(hexamethylene succinate) (PHS) were extensively studied. With respect to PHS, the introduction of a small content of butylene succinate (BS) unit slightly reduces the melting point and equilibrium melting point but hardly influences the glass transition temperature of PHBS. Despite crystallization temperature, PHS and PHBS crystallize through the same crystallization mechanism. At the same crystallization temperature, PHBS crystallizes more slowly than PHS; furthermore, lowering crystallization temperature enhances the crystallization rates of PHBS and PHS. The spherulites morphologies were observed for both of them, with the spherulites nucleation density of the copolymer being smaller than that of the homopolymer. PHBS and PHS share the same crystal structures, indicative of the location of BS unit in the amorphous region.  相似文献   
998.
锌粉对1,2,4-三氯苯的脱氯性能   总被引:1,自引:0,他引:1  
谢凝子  邱罡  陈少瑾 《化工环保》2007,27(3):227-229
采用锌粉对1,2,4-三氯苯(1,2,4-TCB)进行了脱氯的研究。实验结果表明,在40mL质量浓度为22.94m g/L的1,2,4-TCB水溶液中加入1.0g锌粉,反应24h时,1,2,4-TCB的还原率可达94.6%;反应16h时,试样中的Cl-浓度约为1,2,4-TCB完全脱氯所得Cl-理论浓度的30%;锌粉还原1,2,4-TCB的反应能在较宽的pH范围内进行,弱碱性条件下的脱氯效果最好,1,2,4-TCB的还原率达70%。  相似文献   
999.
Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO(2) and CoO directly as CoC(2)O(4)·2H(2)O with 1.0 M oxalate solution at 80°C and solid/liquid ratio of 50 g L(-1) for 120 min. The reaction efficiency of more than 98% of LiCoO(2) can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.  相似文献   
1000.
分别采用4种纳滤膜处理某炼化公司的反渗透浓水。在初始COD为57.8 mg/L、TOC为23.94 mg/L、ρ(Ca2+)为289.0 mg/L、ρ(Mg2+)为54.6 mg/L、ρ(SO42-)为327.7 mg/L、ρ(Cl-)为1 106.8 mg/L的条件下,经纳滤处理后COD去除率达60%以上,污水COD降至30 mg/L以下,TOC去除率为31.9%~85.5%,阳离子的去除率为33.9%~97.0%,SO42-的去除率为63.3%~97.6%,Cl-的去除率较低。膜A的膜孔分布密集,具有很高的通量,对有机物和无机盐的截留效果较差;膜B和膜C对有机物和二价离子的截留效果较好;膜D的膜孔分布稀松,膜通量最低,对有机物和无机盐的截留能力均较强,但随出水体积的增加,对无机盐的截留能力下降较为明显。4种纳滤膜的性能各异,可满足不同企业的需求,具有良好的应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号