首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5756篇
  免费   66篇
  国内免费   256篇
安全科学   139篇
废物处理   277篇
环保管理   418篇
综合类   1160篇
基础理论   1403篇
环境理论   5篇
污染及防治   1900篇
评价与监测   419篇
社会与环境   319篇
灾害及防治   38篇
  2023年   70篇
  2022年   154篇
  2021年   170篇
  2020年   89篇
  2019年   106篇
  2018年   208篇
  2017年   229篇
  2016年   293篇
  2015年   206篇
  2014年   322篇
  2013年   454篇
  2012年   347篇
  2011年   392篇
  2010年   265篇
  2009年   223篇
  2008年   373篇
  2007年   326篇
  2006年   262篇
  2005年   215篇
  2004年   190篇
  2003年   162篇
  2002年   142篇
  2001年   90篇
  2000年   47篇
  1999年   64篇
  1998年   44篇
  1997年   51篇
  1996年   31篇
  1995年   37篇
  1994年   39篇
  1993年   21篇
  1992年   26篇
  1991年   25篇
  1990年   20篇
  1989年   17篇
  1988年   16篇
  1987年   12篇
  1986年   26篇
  1985年   13篇
  1984年   13篇
  1983年   15篇
  1982年   21篇
  1981年   12篇
  1980年   13篇
  1972年   9篇
  1966年   16篇
  1965年   10篇
  1957年   9篇
  1956年   11篇
  1954年   9篇
排序方式: 共有6078条查询结果,搜索用时 164 毫秒
181.
Packaging steel is more advantageously recovered and recycled than other packaging material due to its magnetic properties. The steel used for packaging is of high quality, and post-consumer waste therefore produces high-grade ferrous scrap. Recycling is thus an important issue for reducing raw material consumption, including iron ore, coal and energy. Household refuse management consists of collection/disposal, transport, and processing and treatment - incineration and composting being the most widely used methods in Spain. Total Spanish MSW production exceeds 21 million tons per year, of which 28.1% and 6.2% are treated in compost and incineration plants, respectively. This paper presents a comprehensive study of incineration and compost plants in Spain, including a review of the different processes and technologies employed and the characteristics and quality of the recovered ferrous scrap. Of the total amount of packaging steel scrap recovered from MSW, 38% comes from compost plants and 14% from incineration plants. Ferrous scrap from incineration plants presents a high degree of chemical alteration as a consequence of the thermal process to which the MSW is subjected, particularly the conditions in which the slag is cooled, and accordingly its quality diminishes. Fragmentation and magnetic separation processes produce an enhancement of the scrap quality. Ferrous scrap from compost plants has a high tin content, which negatively affects its recycling. Cleaning and detinning processes are required prior to recycling.  相似文献   
182.
Guerra P  Ahumada I  Carrasco A 《Chemosphere》2007,68(11):2021-2027
Biosolid application to soil may be a supply of nutrients and micronutrients but it may also accumulate toxic compounds which would be absorbed by crops and through them be incorporated to the trophic chain.

The present study deals with the effect of biosolid application on Cr, Cu, Pb, Ni, and Zn in agricultural soils. The procedure used is sequential extraction so that the availability of those metals may be estimated and related to their bioavailability as determined through two indicator plants grown in greenhouse: ryegrass (Lolium perenne L.) and red clover (Trifolium pratense). Results showed that biosolid application to soil increased total Cu and Zn content. Sequential extraction showed that the more labile Zn fractions increased after biosolid application to soil. This was confirmed when assessing the total content of this metal in shoot and root of the plants under study, since a higher content was found in plant tissues, while no significant differences were found for Cu, Cr, Ni, and Pb.  相似文献   

183.
Aguiar A  Ferraz A 《Chemosphere》2007,66(5):947-954
Several phenol derivatives were evaluated regarding their capacities for Fe(3+) and Cu(2+) reduction. Selected compounds were assayed in Fenton-like reactions to degrade Azure B. 3,4-Dihydroxyphenylacetic, 2,5-dihydroxyterephtalic, gallic, chromotropic and 3-hydroxyanthranilic acids were the most efficient reducers of both metallic ions. The reaction system composed of 3-hydroxyanthranilic acid/Fe(3+)/H(2)O(2) was able to degrade Azure B at higher levels than the conventional Fenton reaction (87% and 75% of decolorization after 20min reaction, respectively). Gallic and syringic acids, catechol and vanillin induced Azure B degradations at lower levels as compared with conventional Fenton reaction. Azure B was not degraded in the presence of 10% (v/v) methanol or ethanol, which are OH radical scavengers, confirming the participation of this radical in the degradation reactions. Iron-containing reactions consumed substantially more H(2)O(2) than reactions containing copper. In iron-containing reactions, even the systems that caused a limited degradation of the dye consumed high concentrations of H(2)O(2). On the other hand, the reactions containing Fe(3+), H(2)O(2) and 3-hydroxyanthranilic acid or 3,4-dihydroxyphenylacetic acid were the most efficient on degradation of Azure B and also presented the highest H(2)O(2) consumption. These results indicate that H(2)O(2) consumption occurs even when the dye is not extensively degraded, suggesting that part of the generated OH radicals reacts with the own phenol derivative instead of Azure B.  相似文献   
184.
This work investigated the degradation of a natural estrogen (17beta-estradiol) and the removal of estrogenic activity by the ozonation process in three different pHs (3, 7 and 11). A recombinant yeast assay (YES assay) was employed to determine estrogenic activity of the ozonized samples and of the by-products formed during the ozonation. Ozonation was very efficient for the removal of 17beta-estradiol in aqueous solutions. High removals (>99%) were achieved with low ozone dosages in the three different pHs. Several by-products were formed during the ozonation of 17beta-estradiol. However, only a few compounds could be identified and confirmed. Different by-products are formed at different pHs, which is probably due to different chemical pathways and different oxidants (O(3) and OH radical). The by-products formed at pH 11 were 10epsilon-17beta-dihydroxy-1, 4-estradieno-3-one (DEO) and 2-hydroxyestradiol, which were not formed in pH 3. Only testosterone could be observed in pH 3, whereas at pH 7 all three by-products were found. At pH 7 and 11 the applied ozone dosages were not enough to remove all the estrogenicity from samples, even though the 17beta-estradiol residual concentration for these two pHs was lower than at pH 3. Higher estrogenicity was detected at pH 11. An explanation to this fact may be that oxidation via OH radical forms more by-products with estrogenic activity. Probably, the formation of 2-hydroxyestradiol at pHs 7 and 11 is contributing to the residual estrogenicity of samples ozonized at these pHs. In this work, complete removal of estrogenic activity was only obtained at pH 3.  相似文献   
185.
186.

Background, Aim and Scope

The presence of heavy metals in wastewater is one of the main causes of water and soil pollution. The aim of the present study was to investigate the removal of Cd, Cu, Pb, Hg, Mn, Cr and Zn in urban effluent by a biological wastewater treatment, as well as to quantify the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sn, Tl, V and Zn in dewatering sludge from the Biological Wastewater Treatment Plant to Ribeirão Preto (RP-BWTP), Brazil.

Materials and Methods

Concentrations of Cd, Cr, Cu, Mn and Pb in wastewater and those of Ni in sludge were determined by atomic absorption spectrophotometry with graphite furnace atomization. Mercury concentrations in wastewater were measured by hydride generation atomic spectrophotometry, and Zn levels were determined by atomic absorption spectrophotometry using acetylene flame. In sludge, the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Sn, Tl, V and Zn were determined by inductively coupled plasma-mass spectrometry.

Results

The percentages of removal efficiency (RE) were the following: Hg 61.5%, Cd 60.0%, Zn 44.9%, Cu 44.2%, PB 39.7%, Cr 16,5% and Mn 10.4%. In turn, the mean concentrations (mg/kg) of metals in dewatering sludge followed this increasing order: Tl (<0.03), Hg (0.31), Be (0.43), As (1.14), Cd (1.34), V (59.2), Pb (132.1), Sn (166.1), Cr (195.0), Mn (208.1), Ni (239.4), Cu (391.7), Zn (864.4) and Fe (20537).

Discussion

The relationship between metal levels in untreated wastewater, as well as the removal efficiency are in agreement with previous data from various investigators, It is important to note that metal removal efficiency is not only affected by metal ion species and concentration, but also by other conditions such as operating parameters, physical, chemical, and biological factors.

Conclusions

Metal values recorded for treated wastewater and sludge were within the maximum permitted levels established by the Environmental Sanitation Company (CETESB), São Paulo, Brazil.

Recommendations

There is an urgent need for the authorities who are responsible for legislation on sludge uses in agriculture of establishing safety levels for As, Be, Hg, Sn, Tl and V.

Perspectives

According to the current metal levels, RP-BWTP sludge might be used for agriculture purposes. However, for an environmentally safe use of sewage sludge, further studies including systematic monitoring are recommended. Annual metal concentrations and predicted variations of those elements in the sludge should be monitored.
  相似文献   
187.
188.
It has been suggested that obese individuals, because of an increased dilution space (body fat) for lipophilic organochlorines compounds, may have greater levels of toxic pollutants than lean sedentary individuals. It is important to further examine this possibility because of the potential contribution of organochlorine pesticides in the development of Parkinson's disease and other neurological diseases. The aim of this study was to further investigate the relationship between the magnitude of obesity and the plasma concentration of organochlorines for a wide range of BMI (with participants at steady state body weight). Fifty-three individuals were selected on the basis of their body mass index (BMI): lean controls (n=16; mean BMI 22.8+/-2.2 kg/m(2); mean age 38.8+/-9.4 years), obese individuals (n=19; mean BMI 33.4+/-3.0 kg/m(2); mean age 38.6+/-7.6 years) and morbidly obese individuals (n=18; mean BMI 49.3+/-6.5 kg/m(2); mean age 44.3+/-9.2 years). Blood samples were analyzed for organochlorine compounds. The relationship between the total plasma organochlorine concentration and BMI was tested using a multiple regression analysis. Age was included in the model. There was no relationship between the total plasma organochlorine concentration and BMI. Organochlorine concentrations, however, were correlated with age (BMI-adjusted R(2)=0.46; p<0.001). At steady state body weight, toxic pollutant concentrations are not associated to obesity but strongly correlate with age.  相似文献   
189.
Sediment characteristics are well known to interfere with toxicity, mainly through differences in terms of bioaccumulation. Here, with chironomids exposed to zinc in an artificial and a field sediment, we investigated the differences of zinc accumulation and of effects on the life cycle, at individual and population level. We used biology and energy-based modeling to analyze the data at all the levels of biological organization. This permits a reliable estimation of thresholds values for tissue residues. Differences in zinc tissue residues accounted for most of the differences between the results for both sediments (a factor of 11 for differences from 20 to 100 depending on the parameter which is considered). Taking into account accumulation and background variability, the differences relative to thresholds could be accounted for. However, it appeared that, once the threshold was passed, effects were much more pronounced for organisms exposed to artificial sediment compared to field sediment. We concluded that some sediment characteristics can enhance toxicity, in addition to their influence on the compound accumulation, even if the latter was the major source of differences in our study.  相似文献   
190.
Two groups of Avicennia germinans plants with differences in the radical architecture were exposed under hydroponic conditions to 95ppm of cadmium (Cd) for a period of 24h. Later, Cd concentration in roots, stems and leaves was determined by graphite furnace atomic absorption spectrophotometry. Our results showed that, for both groups of plants, the roots accumulated higher concentration of Cd as compared to stems and leaves, though, the plants of group B displayed enhanced radical architecture, better growth performance, and lower Cd concentration as compared to plants of group A. In contrast, low values of leaves/roots Cd transportation index, and bioaccumulation factor were found in plants of group B. These results suggest that the higher radical architecture developed in plants of group B might better adjust the uptake of Cd as a result of an integrated network of multiple response processes for instances, production of organic acids, antioxidative replay, cell-wall lignification and/or suberization. Further studies will be focused in understanding the role of the radical system in mangrove plants with the rhizosphere activation and root adsorption to soil Cd under natural conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号