首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20589篇
  免费   234篇
  国内免费   121篇
安全科学   520篇
废物处理   888篇
环保管理   2758篇
综合类   3383篇
基础理论   5813篇
环境理论   10篇
污染及防治   5304篇
评价与监测   1278篇
社会与环境   858篇
灾害及防治   132篇
  2021年   136篇
  2019年   127篇
  2018年   234篇
  2017年   251篇
  2016年   401篇
  2015年   306篇
  2014年   467篇
  2013年   1598篇
  2012年   573篇
  2011年   815篇
  2010年   666篇
  2009年   661篇
  2008年   829篇
  2007年   863篇
  2006年   765篇
  2005年   662篇
  2004年   647篇
  2003年   628篇
  2002年   609篇
  2001年   763篇
  2000年   574篇
  1999年   325篇
  1998年   261篇
  1997年   278篇
  1996年   279篇
  1995年   331篇
  1994年   302篇
  1993年   284篇
  1992年   277篇
  1991年   278篇
  1990年   294篇
  1989年   277篇
  1988年   249篇
  1987年   240篇
  1986年   222篇
  1985年   200篇
  1984年   255篇
  1983年   210篇
  1982年   271篇
  1981年   219篇
  1980年   184篇
  1979年   201篇
  1978年   184篇
  1977年   153篇
  1976年   138篇
  1975年   143篇
  1974年   159篇
  1973年   162篇
  1972年   148篇
  1971年   146篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
431.
Environmental Science and Pollution Research - The aim of the study was to determine if gold-mining activities could impact the mercury (Hg) concentrations and isotopic signatures in freshwater...  相似文献   
432.
Environmental Science and Pollution Research - The utilisation of waste wood from furniture production brings new problems connected with an incomplete thermochemical decomposition of additives...  相似文献   
433.

Artificial Light at Night (ALAN) is expanding worldwide, and the study of its influence remains limited mainly to documenting impacts, overlooking the variation in key characteristics of the artificial light such as its intensity. The potential dose–response of fitness-related traits to different light intensities has not been assessed in sandy beach organisms. Hence, this study explored dose-responses to ALAN by exposing the intertidal sandy beach isopod Tylos spinulosus to a range of light intensities at night: 0 (control), 20, 40, 60, 80 and 100 lx. We quantified the response of this species at the molecular (RNA:DNA ratios), physiological (absorption efficiency) and organismal (growth rate) levels. Linear and non-linear regressions were used to explore the relationship between light intensity and the isopod response. The regressions showed that increasing light intensity caused an overall?~?threefold decline in RNA:DNA ratios and a?~?threefold increase in absorption efficiency, with strong dose-dependent effects. For both response variables, non-linear regressions also identified likely thresholds at 80 lx (RNA:DNA) and 40 lx (absorption efficiency). By contrast, isopod growth rates were unrelated (unaltered) by the increase in light intensity at night. We suggest that ALAN is detrimental for the condition of the isopods, likely by reducing the activity and feeding of these nocturnal organisms, and that the isopods compensate this by absorbing nutrients more efficiently in order to maintain growth levels.

  相似文献   
434.
Environmental Science and Pollution Research - Increasing ultraviolet (UV) radiation is causing oxidative stress that accounts for growth and yield losses in the present era of climate change....  相似文献   
435.
Environmental Science and Pollution Research - Exposure to environmental pollutants has been associated with alteration on relative levels of mitochondrial DNA copy number (mtDNAcn). However, the...  相似文献   
436.
A regional survey of potential contaminants in marine or estuarine sediments is often one of the first steps in a post-disturbance environmental impact assessment. Of the many different chemical extraction or digestion procedures that have been proposed to quantify metal contamination, partial acid extractions are probably the best overall compromise between selectivity, sensitivity, precision, cost and expediency. The extent to which measured metal concentrations relate to the anthropogenic fraction that is bioavailable is contentious, but is one of the desired outcomes of an assessment or prediction of biological impact. As part of a regional survey of metal contamination associated with Australia's past waste management activities in Antarctica, we wanted to identify an acid type and extraction protocol that would allow a reasonable definition of the anthropogenic bioavailable fraction for a large number of samples. From a kinetic study of the 1 M HCl extraction of two Certified Reference Materials (MESS-2 and PACS-2) and two Antarctic marine sediments, we concluded that a 4 h extraction time allows the equilibrium dissolution of relatively labile metal contaminants, but does not favour the extraction of natural geogenic metals. In a regional survey of 88 marine samples from the Casey Station area of East Antarctica, the 4 h extraction procedure correlated best with biological data, and most clearly identified those sediments thought to be contaminated by runoff from abandoned waste disposal sites. Most importantly the 4 h extraction provided better definition of the low to moderately contaminated locations by picking up small differences in anthropogenic metal concentrations. For the purposes of inter-regional comparison, we recommend a 4 h 1 M HCl acid extraction as a standard method for assessing metal contamination in Antarctica.  相似文献   
437.
An assessment of impacts on Arctic terrestrial ecosystems has emphasized geographical variability in responses of species and ecosystems to environmental change. This variability is usually associated with north-south gradients in climate, biodiversity, vegetation zones, and ecosystem structure and function. It is clear, however, that significant east-west variability in environment, ecosystem structure and function, environmental history, and recent climate variability is also important. Some areas have cooled while others have become warmer. Also, east-west differences between geographical barriers of oceans, archipelagos and mountains have contributed significantly in the past to the ability of species and vegetation zones to relocate in response to climate changes, and they have created the isolation necessary for genetic differentiation of populations and biodiversity hot-spots to occur. These barriers will also affect the ability of species to relocate during projected future warming. To include this east-west variability and also to strike a balance between overgeneralization and overspecialization, the ACIA identified four major sub regions based on large-scale differences in weather and climate-shaping factors. Drawing on information, mostly model output that can be related to the four ACIA subregions, it is evident that geographical barriers to species re-location, particularly the distribution of landmasses and separation by seas, will affect the northwards shift in vegetation zones. The geographical constraints--or facilitation--of northward movement of vegetation zones will affect the future storage and release of carbon, and the exchange of energy and water between biosphere and atmosphere. In addition, differences in the ability of vegetation zones to re-locate will affect the biodiversity associated with each zone while the number of species threatened by climate change varies greatly between subregions with a significant hot-spot in Beringia. Overall, the subregional synthesis demonstrates the difficulty of generalizing projections of responses of ecosystem structure and function, species loss, and biospheric feedbacks to the climate system for the whole Arctic region and implies a need for a far greater understanding of the spatial variability in the responses of terrestrial arctic ecosystems to climate change.  相似文献   
438.
Emission samples for toxicity testing and detailed chemical characterization were collected from a variety of gasoline- and diesel-fueled in-use vehicles operated on the Unified Driving Cycle on a chassis dynamometer. Gasoline vehicles included normal particle mass (particulate matter [PM]) emitters (tested at 72 and 30 degrees F), "black" and "white" smokers, and a new-technology vehicle (tested at 72 degrees F). Diesel vehicles included current-technology vehicles (tested at 72 and 30 degrees F) and a high PM emitter. Total PM emission rates ranged from below 3 mg/mi up to more than 700 mg/mi for the white smoker gasoline vehicle. Emission rates of organic and elemental carbon (OC/EC), elements (metals and associated analytes), ions, and a variety of particulate and semi-volatile organic compounds (polycyclic aromatic hydrocarbons [PAH], nitro-PAH, oxy-PAH, hopanes, and steranes) are reported for these vehicles. Speciated organic analysis also was conducted on the fuels and lube oils obtained from these vehicles after the emissions testing. The compositions of emissions were highly dependent on the fuel type (gasoline vs. diesel), the state of vehicle maintenance (low, average, or high emitters; white or black smokers), and ambient conditions (i.e., temperature) of the vehicles. Fuel and oil analyses from these vehicles showed that oil served as a repository for combustion byproducts (e.g., PAH), and oil-burning gasoline vehicles emitted PAH in higher concentrations than did other vehicles. These PAH emissions matched the PAH compositions observed in oil.  相似文献   
439.
Uncertainties and recommendations   总被引:1,自引:0,他引:1  
An assessment of the impacts of changes in climate and UV-B radiation on Arctic terrestrial ecosystems, made within the Arctic Climate Impacts Assessment (ACIA), highlighted the profound implications of projected warming in particular for future ecosystem services, biodiversity and feedbacks to climate. However, although our current understanding of ecological processes and changes driven by climate and UV-B is strong in some geographical areas and in some disciplines, it is weak in others. Even though recently the strength of our predictions has increased dramatically with increased research effort in the Arctic and the introduction of new technologies, our current understanding is still constrained by various uncertainties. The assessment is based on a range of approaches that each have uncertainties, and on data sets that are often far from complete. Uncertainties arise from methodologies and conceptual frameworks, from unpredictable surprises, from lack of validation of models, and from the use of particular scenarios, rather than predictions, of future greenhouse gas emissions and climates. Recommendations to reduce the uncertainties are wide-ranging and relate to all disciplines within the assessment. However, a repeated theme is the critical importance of achieving an adequate spatial and long-term coverage of experiments, observations and monitoring of environmental changes and their impacts throughout the sparsely populated and remote region that is the Arctic.  相似文献   
440.
Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号