首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20598篇
  免费   237篇
  国内免费   122篇
安全科学   521篇
废物处理   888篇
环保管理   2758篇
综合类   3384篇
基础理论   5824篇
环境理论   10篇
污染及防治   5304篇
评价与监测   1278篇
社会与环境   858篇
灾害及防治   132篇
  2021年   136篇
  2019年   127篇
  2018年   234篇
  2017年   252篇
  2016年   401篇
  2015年   306篇
  2014年   467篇
  2013年   1598篇
  2012年   573篇
  2011年   815篇
  2010年   666篇
  2009年   661篇
  2008年   829篇
  2007年   863篇
  2006年   765篇
  2005年   662篇
  2004年   647篇
  2003年   628篇
  2002年   609篇
  2001年   763篇
  2000年   574篇
  1999年   325篇
  1998年   261篇
  1997年   278篇
  1996年   279篇
  1995年   331篇
  1994年   302篇
  1993年   284篇
  1992年   277篇
  1991年   278篇
  1990年   294篇
  1989年   277篇
  1988年   249篇
  1987年   240篇
  1986年   222篇
  1985年   200篇
  1984年   255篇
  1983年   210篇
  1982年   271篇
  1981年   219篇
  1980年   184篇
  1979年   201篇
  1978年   184篇
  1977年   153篇
  1976年   138篇
  1975年   143篇
  1974年   159篇
  1973年   162篇
  1972年   148篇
  1971年   146篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
         下载免费PDF全文
A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100–1000 times pre‐human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard‐bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification—the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over‐ and under‐estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre‐human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05–0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher. Estimación de la Tasa Normal de Extinción de Especies  相似文献   
142.
         下载免费PDF全文
Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top‐down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large‐bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no‐take, and no‐entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no‐entry zones than in fished and no‐take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no‐entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top‐down forces may not play a strong role in regulating large‐bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. El Impacto de las Áreas de Conservación sobre las Interacciones Tróficas entre los Depredadores Dominantes y los Herbívoros en los Arrecifes de Coral  相似文献   
143.
         下载免费PDF全文
Fishing pressure has increased the extinction risk of many elasmobranch (shark and ray) species. Although many countries have established no‐take marine reserves, a paucity of monitoring data means it is still unclear if reserves are effectively protecting these species. We examined data collected by a small group of divers over the past 21 years at one of the world's oldest marine protected areas (MPAs), Cocos Island National Park, Costa Rica. We used mixed effects models to determine trends in relative abundance, or probability of occurrence, of 12 monitored elasmobranch species while accounting for variation among observers and from abiotic factors. Eight of 12 species declined significantly over the past 2 decades. We documented decreases in relative abundance for 6 species, including the iconic scalloped hammerhead shark (Sphyrna lewini) (?45%), whitetip reef shark (Triaenodon obesus) (?77%), mobula ray (Mobula spp.) (?78%), and manta ray (Manta birostris) (?89%), and decreases in the probability of occurrence for 2 other species. Several of these species have small home ranges and should be better protected by an MPA, which underscores the notion that declines of marine megafauna will continue unabated in MPAs unless there is adequate enforcement effort to control fishing. In addition, probability of occurrence at Cocos Island of tiger (Galeocerdo cuvier), Galapagos (Carcharhinus galapagensis), blacktip (Carcharhinus limbatus), and whale (Rhincodon typus) sharks increased significantly. The effectiveness of MPAs cannot be evaluated by examining single species because population responses can vary depending on life history traits and vulnerability to fishing pressure.  相似文献   
144.
         下载免费PDF全文
We examined how ecological and evolutionary (eco‐evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco‐evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco‐evo PVA using individual‐based models with individual‐level genotype tracking and dynamic genotype–phenotype mapping to model emergent population‐level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco‐evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence.  相似文献   
145.
         下载免费PDF全文
Electronic tags (both biotelemetry and biologging platforms) have informed conservation and resource management policy and practice by providing vital information on the spatial ecology of animals and their environments. However, the extent of the contribution of biological sensors (within electronic tags) that measure an animal's state (e.g., heart rate, body temperature, and details of locomotion and energetics) is less clear. A literature review revealed that, despite a growing number of commercially available state sensor tags and enormous application potential for such devices in animal biology, there are relatively few examples of their application to conservation. Existing applications fell under 4 main themes: quantifying disturbance (e.g., ecotourism, vehicular and aircraft traffic), examining the effects of environmental change (e.g., climate change), understanding the consequences of habitat use and selection, and estimating energy expenditure. We also identified several other ways in which sensor tags could benefit conservation, such as determining the potential efficacy of management interventions. With increasing sensor diversity of commercially available platforms, less invasive attachment techniques, smaller device sizes, and more researchers embracing such technology, we suggest that biological sensor tags be considered a part of the necessary toolbox for conservation. This approach can measure (in real time) the state of free‐ranging animals and thus provide managers with objective, timely, relevant, and accurate data to inform policy and decision making.  相似文献   
146.
    
  相似文献   
147.
    
The spatial and temporal variations of some trace metals in the surface sediments of Cochin Estuary were analyzed along with their geochemical associations to identify the possible sources, bioavailability and the health risks posed by them. The dominance of kaolinite and suggested that clay minerals distribution is influenced by sediment sorting. Total metal analysis revealed enrichment for Cd, Pb and Zn due to anthropogenic activities. The speciation analysis established that notwithstanding the large availability, carbonate as well as organic and sulfides bound fractions showed negligible associations with most of the metals. Hydrous Fe–Mn oxides appeared to play a major role in controlling the fate and transport of these metals in the sediments of Cochin Estuary. Lower contribution of the residual fractions for Cd (21%–26%), Pb (<60%) and Zn (24%–42%) indicated an obvious increase of other geochemical fractions. Risk assessment analysis revealed that regardless of total concentration, none of the analyzed metals were at safe levels in the estuary as appreciable percentages were found to be associated with mobile geochemical forms. The speciation study conspicuously established that the metals originating from non-geogenic sources are largely associated with the labile fractions and hence are more detrimental to the aquatic biota.  相似文献   
148.
149.
         下载免费PDF全文
Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite‐inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid‐20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host‐density threshold and cost‐benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host–parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of an uncertain environmental future.  相似文献   
150.
         下载免费PDF全文
Accurate trend estimates are necessary for understanding which species are declining and which are most in need of conservation action. Imperfect species detection may result in unreliable trend estimates because this may lead to the overestimation of declines. Because many management decisions are based on population trend estimates, such biases could have severe consequences for conservation policy. We used an occupancy‐modeling framework to estimate detectability and calculate nationwide population trends for 14 Swiss amphibian species both accounting for and ignoring imperfect detection. Through the application of International Union for Conservation of Nature Red List criteria to the different trend estimates, we assessed whether ignoring imperfect detection could affect conservation policy. Imperfect detection occurred for all species and detection varied substantially among species, which led to the overestimation of population declines when detectability was ignored. Consequently, accounting for imperfect detection lowered the red‐list risk category for 5 of the 14 species assessed. We demonstrate that failing to consider species detectability can have serious consequences for species management and that occupancy modeling provides a flexible framework to account for observation bias and improve assessments of conservation status. A problem inherent to most historical records is that they contain presence‐only data from which only relative declines can be estimated. A move toward the routine recording of nonobservation and absence data is essential if conservation practitioners are to move beyond this toward accurate population trend estimation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号