首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34538篇
  免费   466篇
  国内免费   422篇
安全科学   1080篇
废物处理   1485篇
环保管理   4889篇
综合类   5766篇
基础理论   9366篇
环境理论   16篇
污染及防治   8834篇
评价与监测   2041篇
社会与环境   1710篇
灾害及防治   239篇
  2022年   265篇
  2021年   279篇
  2020年   267篇
  2019年   243篇
  2018年   465篇
  2017年   456篇
  2016年   721篇
  2015年   568篇
  2014年   829篇
  2013年   2733篇
  2012年   1078篇
  2011年   1540篇
  2010年   1219篇
  2009年   1295篇
  2008年   1517篇
  2007年   1575篇
  2006年   1352篇
  2005年   1143篇
  2004年   1146篇
  2003年   1070篇
  2002年   1036篇
  2001年   1249篇
  2000年   974篇
  1999年   587篇
  1998年   428篇
  1997年   456篇
  1996年   446篇
  1995年   536篇
  1994年   467篇
  1993年   444篇
  1992年   412篇
  1991年   422篇
  1990年   441篇
  1989年   402篇
  1988年   360篇
  1987年   350篇
  1986年   338篇
  1985年   315篇
  1984年   394篇
  1983年   329篇
  1982年   397篇
  1981年   343篇
  1980年   291篇
  1979年   313篇
  1978年   251篇
  1977年   230篇
  1975年   205篇
  1974年   232篇
  1973年   225篇
  1972年   215篇
排序方式: 共有10000条查询结果,搜索用时 831 毫秒
821.
In this study the possibility of both chemical and combined chemical + thermal activation of municipal solid waste incinerator bottom ash was investigated. A number of chemical activators including Na2SiO3·9H2O, NaOH, Na2SO4 and CaCl2·2H2O were individually added at varying concentrations to bottom ash/Portland cement mixtures having different bottom ash contents. The effect of the selected compounds was evaluated in terms of macroscopic properties including mechanical strength and composition of cementitious materials/water slurries. The results showed that Na-based activators were not capable of improving the characteristics of the cementitious products if compared to Portland cement under both normal and accelerated curing. Conversely, the use of calcium chloride at 40 °C-curing did promote the pozzolanic properties of bottom ash, leading to UCS values of 45.5 and 60.0 MPa after 10 and 20 days, respectively, as opposed to a value of 43.6 MPa obtained after 28 days for Portland cement under normal curing conditions.  相似文献   
822.
Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation management strategies on NO(3) leaching in irrigated corn. Two irrigation schedules (1.0x and 1.25x optimum) were combined with six N fertilizer treatments broadcast as NH(4)NO(3) (kg N ha(-1)): 300 and 250 applied pre-plant; 250 applied pre-plant and sidedress; 185 applied pre-plant and sidedress; 125 applied pre-plant and sidedress; and 0. Porous-cup tensiometers and solution samplers were installed in each of the four highest N treatments. Soil solution samples were collected during the 2001 and 2002 growing seasons. Maximum corn grain yield was achieved with 125 or 185 kg N ha(-1), regardless of the irrigation schedule (IS). The 1.25x IS exacerbated the amount of NO(3) leached below the 152-cm depth in the preplant N treatments, with a mean of 146 kg N ha(-1) for the 250 and 300 kg N preplant applications compared with 12 kg N ha(-1) for the same N treatments and 1.0x IS. With 185 kg N ha(-1), the 1.25x IS treatment resulted in 74 kg N ha(-1) leached compared with 10 kg N ha(-1) for the 1.0x IS. Appropriate irrigation scheduling and N fertilizer rates are essential to improving N management practices on these sandy soils.  相似文献   
823.
DIMBOA (3,4-dihydro-2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), a major benzoxazinone of Poaceae plants, was isolated and purified from corn seedlings. The effect of isolated and purified DIMBOA on the degradation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], and its toxic breakdown products, desethylatrazine [2-chloro-4-amino-6-(isopropylamino)-s-triazine; DEA] and desisopropylatrazine [2-chloro-4-(ethylamino)-6-amino-s-triazine; DIA], was studied in the absence of plants using batch experiments, while the effect of corn root exudates on these compounds was determined in hydroponic experiments. Degradation experiments were performed in the presence and absence of 50 microM, 1 mM, or 5 mM DIMBOA resulting in ratios of DIMBOA to pesticide of 1:1, 20:1, and 100:1. We observed a 100% degradation of atrazine to hydroxyatrazine within 48 h at a ratio of DIMBOA to atrazine of 100:1. DIMBOA had the largest effect on atrazine, while it was about three times less effective on DEA and DIA. Corn (Zea mays L. cv. LG 2185) was exposed to 10 mg L(-1) of either atrazine, DEA, or DIA for 11 d in a growth chamber experiment. Up to 4.3 micromol L(-1) d(-1) of hydroxyatrazine were formed in the nutrient solutions by plants exposed to atrazine, while the formation of hydroxylated metabolites from plants exposed to DEA and DIA was smaller and also delayed. The formation of hydroxylated metabolites increased in the solution with plant age in all atrazine, DEA, and DIA treatments. HMBOA (3,4-dihydro-2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), the lactam precursor of DIMBOA, and a tentatively identified derivative of MBOA (2,3-dihydro-6-methoxy-benzoxazol-2-one) were detected in the corn root exudates. Mass balance calculations revealed that up to 30% of the disappearance of atrazine and DEA, and up to 10% of DIA removal from the solution medium in our study could be explained by the formation of hydroxylated metabolites in the solution itself. Our results show that higher plants such as corn have the potential to promote the hydrolysis of triazine residues in soils by exudation of benzoxazinones.  相似文献   
824.
Anaerobic microbial processes play particularly important roles in the biogeochemical functions of wetlands, affecting water quality, nutrient transport, and greenhouse gas fluxes. This study simultaneously examined nitrate and sulfate removal rates in sediments of five southwestern Michigan wetlands varying in their predominant water sources from ground water to precipitation. Rates were estimated using in situ push-pull experiments, in which 500 mL of anoxic local ground water containing ambient nitrate and sulfate and amended with bromide was injected into the near-surface sediments and subsequently withdrawn over time. All wetlands rapidly depleted nitrate added at ambient ground water concentrations within 5 to 20 h, with the rate dependent on concentration. Sulfate, which was variably present in porewaters, was also removed from injected ground water in all wetlands, but only after nitrate was depleted. The sulfate removal rate in ground water-fed wetlands was independent of concentration, in contrast to rates in precipitation-fed wetlands. Sulfate production was observed in some sites during the period of nitrate removal, suggesting that the added nitrate either stimulated sulfur oxidation, possibly by bacteria that can utilize nitrate as an oxidant, or inhibited sulfate reduction by stimulating denitrification. All wetland sediments examined were consistently capable of removing nitrate and sulfate at concentrations found in ground water and precipitation inputs, over short time and space scales. These results demonstrate how a remarkably small area of wetland sediment can strongly influence water quality, such as in the cases of narrow riparian zones or small isolated wetlands, which may be excluded from legal protection.  相似文献   
825.
A field study was initiated in 1992 to investigate the long-term impacts of beef feedlot manure application (composted and uncomposted) on nutrient accumulation and movement in soil, corn silage yield, and nutrient uptake. Two application strategies were compared: providing the annual crop nitrogen (N) requirement (N-based rate) or crop phosphorus (P) removal (P-based rate), as well as a comparison to inorganic fertilizer. Additionally, effects of a winter cover crop were evaluated. Irrigated corn (Zea mays L.) was produced annually from 1993 through 2002. Average silage yield and crop nutrient removal were highest with N-based manure treatments, intermediate with P-based manure treatments, and least with inorganic N fertilizer. Use of a winter cover crop resulted in silage yield reductions in four of ten years, most likely due to soil moisture depletion in the spring by the cover crop. However, the cover crop did significantly reduce NO3-N accumulation in the shallow vadose zone, particularly in latter years of the study. The composted manure N-based treatment resulted in significantly greater soil profile NO3-N concentration and higher soil P concentration near the soil surface. The accounting procedure used to calculate N-based treatment application rates resulted in acceptable soil profile NO3-N concentrations over the short term. While repeated annual manure application to supply the total crop N requirement may be acceptable for this soil for several years, sustained application over many years carries the risk of unacceptable soil P concentrations.  相似文献   
826.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   
827.
For (134/137)Cs, and many other soil contaminants, research into transfer to plants has focused on particular crops and phytoremediation candidates, producing uptake data for a small proportion of all plant taxa. Despite the significance of differences in uptake between plant taxa, the capacity of soil-to-plant transfer models to predict them is currently confined to those taxa for which data exist, there being no method to predict uptake by other taxa. We used residual maximum likelihood (REML) analysis on data from experiments (including 89 plant taxa from China plus 32 phytoremediation candidates) together with data from the literature, to construct a database of relative (134/137)Cs concentrations in 273 plant taxa. The REML (134/137)Cs concentrations in plants are not normally distributed but significantly clustered. Analysis of variance (ANOVA), coded with a recent ordinal phylogeny for flowering plants, showed that plant taxa do not behave independently for (134/137)Cs concentration because 42 and 15% of inter-taxa differences are associated with phylogeny above the species and ordinal level, respectively. In general, Eudicots, and especially the Caryophyllales, Asterales, and Brassicales, have high (134/137)Cs concentrations, while the Fabales and Magnoliids, in particular Poales, have low (134/137)Cs concentrations. Plants of the stress-tolerant ruderal (S-R) growth strategy sensu Grime have, in general, high concentrations of Cs, while those of the competitive (C) and generalist (C-S-R) strategies have low concentrations, although these effects are less pronounced than those of phylogeny. Plant phylogeny and growth strategy might thus be used to predict a significant portion of inter-taxa differences in plant uptake of (134/137)Cs.  相似文献   
828.
Cattle (Bos taurus) producers can replace a part of the traditional diet of barley (Hordeum vulgare L.) grain/silage with sunflower (Helianthus annus L.) seeds or canola meal (Brassica napus L.)/oil to enhance conjugated linoleic acids (CLA) content in milk and meat for its positive health benefits. The objective of this study is to investigate the effects of feeding sunflower or canola to finishing steers on cattle manure chemical properties and volatile fatty acid (VFA) content. The control diet contained 84% rolled barley and 15% barley silage, which provided only 2.6% lipid. The other six treatments had 6.6 to 8.6% lipid delivered from sources such as hay, sunflower seed (SS), canola meal/oil, and SS forage pellets. Manure samples (a mixture of cattle urine, feces, and woodchip bedding materials) were collected and analyzed after cattle had been on these diets for 113 d. The dietary source and level of lipid had no effect on organic N and nitrate N content in manure, but significantly affected ammonia N and VFA. Inclusion of SS forage pellets, hay, or canola meal/oil in cattle diets had no significant impact on manure characteristics, but SS significantly reduced the pH and increased propionic, isobutyric, and isovaleric content. In addition, N loss after excretion (mainly from urine N) increases with the pH and N levels in both feed and manure. The combination of SS with barley silage resulted in a lower VFA and NH3 content in manure and should be a more attractive option. To better manage N nutrient cycles and reduce NH3 related odor problems, feed and manure pH should be one of the factors to consider when determining feed mix rations.  相似文献   
829.
Repeated application may increase rates of pesticide dissipation in soil and reduce persistence. The potential for this to occur was investigated for the fungicide, tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), when used for peanut (Arachis hypogaea L.) production. Soil samples were collected from peanut plots after each of four tebuconazole applications at 2-wk intervals. Soil moisture was adjusted to field capacity as necessary and samples were incubated in the laboratory for 63 d at 30 degrees C. Untreated plot samples spiked with the compound served as controls. Results indicated accelerated dissipation in field-treated samples with the time to fifty percent dissipation (DT50) decreasing from 43 to 5 d after three tebuconazole applications. Corresponding increases in rates of accumulation and decay of degradates were also indicated. Best-fit equations (r2 = 0.84-0.98) to dissipation kinetic data combined with estimates of canopy interception rates were used to predict tebuconazole and degradates concentration in soil after each successive application. Predicted concentrations compared with values measured in surface soil samples were from twofold less to twofold greater. Use of kinetic data will likely enhance assessments of treatment efficacy and human and ecological risks from normal agronomic use of tebuconazole on peanut. However, the study indicated that varying soil conditions (in particular, soil temperature and water content) may have an equal or greater impact on field dissipation rate than development of accelerated dissipation. Results emphasize that extension of laboratory-derived kinetic data to field settings should be done with caution.  相似文献   
830.
Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号