首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23984篇
  免费   248篇
  国内免费   169篇
安全科学   587篇
废物处理   991篇
环保管理   3141篇
综合类   4272篇
基础理论   6537篇
环境理论   13篇
污染及防治   6029篇
评价与监测   1511篇
社会与环境   1179篇
灾害及防治   141篇
  2022年   157篇
  2021年   190篇
  2019年   157篇
  2018年   292篇
  2017年   298篇
  2016年   472篇
  2015年   350篇
  2014年   551篇
  2013年   1878篇
  2012年   682篇
  2011年   971篇
  2010年   765篇
  2009年   798篇
  2008年   970篇
  2007年   1011篇
  2006年   889篇
  2005年   755篇
  2004年   736篇
  2003年   728篇
  2002年   701篇
  2001年   869篇
  2000年   645篇
  1999年   384篇
  1998年   289篇
  1997年   308篇
  1996年   300篇
  1995年   374篇
  1994年   328篇
  1993年   319篇
  1992年   307篇
  1991年   307篇
  1990年   335篇
  1989年   315篇
  1988年   274篇
  1987年   263篇
  1986年   239篇
  1985年   224篇
  1984年   272篇
  1983年   241篇
  1982年   290篇
  1981年   251篇
  1980年   210篇
  1979年   222篇
  1978年   203篇
  1977年   171篇
  1976年   160篇
  1975年   163篇
  1974年   172篇
  1973年   178篇
  1972年   169篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Natural hazards cause great damage to humankind and the surrounding ecosystem. They can cast certain indelible changes on the natural system. One such tsunami event occurred on 26 December 2004 and caused serious damage to the environment, including deterioration of groundwater quality. This study addresses the groundwater quality variation before and after the tsunami from Pumpuhar to Portnova in Tamil Nadu coast using geochemical methods. As a part of a separate Ph.D. study on the salinity of groundwater from Pondicherry to Velankanni, water quality of this region was studied with the collection of samples during November 2004, which indicated that shallow aquifers were not contaminated by sea water in certain locations. These locations were targeted for post-tsunami sample collection during the months of January, March and August 2005 from shallow aquifers. Significant physical mixing (confirmed with mixing models) within the aquifer occurred during January 2005, followed by precipitation of salts in March and complete leaching and dissolution of these salts in the post-monsoon season of August. As a result, maximum impact of tsunami water was observed in August after the onset of monsoon. Tsunami water inundated inland water bodies and topographic lows where it remained stagnant, especially in the near-shore regions. Maximum tsunami inundation occurred along the fluvial distributary channels, and it was accelerated by topography to a certain extent where the southern part of the study area has a gentler bathymetry than the north.  相似文献   
992.
In this study, 24 organochlorine pesticide residues in 109 different honey samples collected from stores and open markets in Konya, Turkey were analyzed by gas chromatography-electron capture detection. Aldrin, cis-chlordane, trans-chlordane, oxy-chlordane, 2,4 -DDE, and 4,4 -DDE were found in all honey samples. The mean value was 0.0540 μg g???1 for oxy-chlordane. In the 55 samples of 109, levels of organochlorine pesticide residues of oxy-chlordane were determined as higher than those of Turkish Alimentarius Codex maximum residual limits (MRLs). Other organochlorine pesticide residues also exceeded MRLs except for cis-heptachlor epoxide and α-hexachlorocyclohexane. Since all of the honey samples are found contaminated and most of these samples exceeded MRLs, a control of organochlorine pesticide residues in honey is necessary for consumer health.  相似文献   
993.
Samples of soil, water, and sediments from industrial estates in Lagos were collected and analyzed for heavy metals and physicochemical composition. Bacteria that are resistant to elevated concentrations of metals (Cd2?+?, Co2?+?, Ni2?+?, Cr6?+?, and Hg2?+?) were isolated from the samples, and they were further screened for antibiotic sensitivity. The minimum tolerance concentrations (MTCs) of the isolates with dual resistance to the metals were determined. The physicochemistry of all the samples indicated were heavily polluted. Twenty-two of the 270 bacterial strains isolated showed dual resistances to antibiotics and heavy metals. The MTCs of isolates to the metals were 14 mM for Cd2?+?, 15 mM for Co2?+? and Ni2?+?, 17 mM for Cr6?+?, and 10 mM for Hg2?+?. Five strains (Pseudomonas aeruginosa, Actinomyces turicensis, Acinetobacter junni, Nocardia sp., and Micrococcus sp.) resisted all the 18 antibiotics tested. Whereas Rhodococcus sp. and Micrococcus sp. resisted 15 mM Ni2?+?, P. aeruginosa resisted 10 mM Co2?+?. To our knowledge, there has not been any report of bacterial strains resisting such high doses of metals coupled with wide range of antibiotics. Therefore, dual expressions of antibiotics and heavy-metal resistance make the isolates, potential seeds for decommissioning of sites polluted with industrial effluents rich in heavy metals, since the bacteria will be able to withstand in situ antibiosis that may prevail in such ecosystems.  相似文献   
994.
In order to reduce the environmental impact due to land disposal of oil fly ash from power plants and to valorize this waste material, the removal of vanadium was investigated using leaching processes (acidic and alkaline treatments), followed by a second step of metal recovery from leachates involving either solvent extraction or selective precipitation. Despite a lower leaching efficiency (compared to sulfuric acid), sodium hydroxide was selected for vanadium leaching since it is more selective for vanadium (versus other transition metals). Precipitation was preferred to solvent extraction for the second step in the treatment since: (a) it is more selective; enabling complete recovery of vanadate from the leachate in the form of pure ammonium vanadate; and (b) stripping of the loaded organic phase (in the solvent extraction process) was not efficient. Precipitation was performed in a two-step procedure: (a) aluminum was first precipitated at pH 8; (b) then ammonium chloride was added at pH 5 to bring about vanadium precipitation.  相似文献   
995.
In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.  相似文献   
996.
The sheer amount of disposable bottles being produced nowadays makes it imperative to identify alternative procedures for recycling them since they are non-biodegradable. This paper describes an innovative use of consumed plastic bottle waste as sand-substitution aggregate within composite materials for building application. Particularly, bottles made of polyethylene terephthalate (PET) have been used as partial and complete substitutes for sand in concrete composites. Various volume fractions of sand varying from 2% to 100% were substituted by the same volume of granulated plastic, and various sizes of PET aggregates were used. The bulk density and mechanical characteristics of the composites produced were evaluated. To study the relationship between mechanical properties and composite microstructure, scanning electron microscopy technique was employed. The results presented show that substituting sand at a level below 50% by volume with granulated PET, whose upper granular limit equals 5mm, affects neither the compressive strength nor the flexural strength of composites. This study demonstrates that plastic bottles shredded into small PET particles may be used successfully as sand-substitution aggregates in cementitious concrete composites. These new composites would appear to offer an attractive low-cost material with consistent properties; moreover, they would help in resolving some of the solid waste problems created by plastics production and in saving energy.  相似文献   
997.
Review of state of the art methods for measuring water in landfills   总被引:1,自引:0,他引:1  
In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field.  相似文献   
998.
A pilot-scale pyrolysis process was carried out for the treatment of a mixture of two types of waste, sewage sludge and cattle manure, comparing the results with others obtained under laboratory conditions (semi-pilot scale). The aim of this study was to obtain the energetic valorization of the products. Owing to the specific characteristics of the plant, two products were obtained from the process: gas and carbonized solid. As no liquid fraction was obtained, the gas fraction is a greater percentage made up of both condensable and non-condensable compounds, which were obtained separately at the laboratory scale. The pilot plant was designed so that the gases produced by thermolysis were burnt continuously in a combustion chamber, while the carbonized fraction was fed in batches for co-combustion. To determine composition and combustion ability, the gas and solid products from the pilot process were characterized by chromatographic analysis of the gaseous fraction and chemical analysis and programmed-temperature combustion of the carbonized solid. The composition of the combustion gases, rich in light hydrocarbons, and the carbon present in the carbonized fraction enable the energetic valorization of these products. The combustion gases were subjected to a cleaning process and their composition analysed twice: before and after the gas cleaning treatment. The study led to a positive assessment of the possible use of the process products as fuel, provided that the combustion gases are treated. As most of the sulphur and chlorine from the original waste are mainly concentrated in the solid fraction, the use of char as a fuel will depend on the effectiveness of clean-up techniques for combustion gases. During gas cleansing, neutralizing with sodium bicarbonate proved effective, especially for the acidic compounds HCl, HF and SO(2).  相似文献   
999.
With the advent of recently promulgated Government regulations on plastics in Mauritius, a study was initiated to examine the biodegradability of two different types of plastic, namely Willow Ridge Plastics - PDQ-H additive (Plastic A) and Ecosafe Plastic - TDPA additive (Plastic B) under controlled and natural composting environments. The results obtained from the controlled composting environment showed that the cumulative carbon dioxide evolution for Plastic A was much higher than that for Plastic B. Plastic A therefore showed a higher level of biodegradation in terms of CO2 evolution than Plastic B. However, from the regression analysis, it was found that the level of CO2 varying with time fitted the sigmoid type curves with very high correlation coefficients (R2 values: 0.9928, 0.9921 and 0.9816, for reference material, inoculum and Plastic A, respectively). The corresponding F-values obtained from the ANOVA analysis together with significance levels of p<0.05 indicated that the three treatments analysed in the biodegradability experiment were significant. The other experiment was undertaken to observe any physical change of Plastics A and B as compared to a reference plastic, namely, compostable plastic bag (Mater-Bi product-Plastic C), when exposed to a natural composting environment. Thermophilic temperatures were obtained for about 3-5 days of composting and the moisture content was in the range of 60-80% throughout the degradation process. It was observed that after 55 days of composting, Plastic C degraded completely while Plastic A and Plastic B did not undergo any significant degradation. It can be concluded that naturally based plastic made of starch would degrade completely in a time frame of 60 days, whereas plastics with biodegradable additive would require a longer time.  相似文献   
1000.
In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号