首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36994篇
  免费   388篇
  国内免费   271篇
安全科学   924篇
废物处理   1501篇
环保管理   4666篇
综合类   7217篇
基础理论   9912篇
环境理论   15篇
污染及防治   9238篇
评价与监测   2256篇
社会与环境   1683篇
灾害及防治   241篇
  2022年   266篇
  2021年   275篇
  2019年   277篇
  2018年   493篇
  2017年   475篇
  2016年   751篇
  2015年   547篇
  2014年   835篇
  2013年   2742篇
  2012年   1029篇
  2011年   1400篇
  2010年   1190篇
  2009年   1178篇
  2008年   1490篇
  2007年   1533篇
  2006年   1389篇
  2005年   1131篇
  2004年   1167篇
  2003年   1129篇
  2002年   1057篇
  2001年   1340篇
  2000年   979篇
  1999年   622篇
  1998年   492篇
  1997年   474篇
  1996年   482篇
  1995年   561篇
  1994年   558篇
  1993年   469篇
  1992年   487篇
  1991年   471篇
  1990年   514篇
  1989年   487篇
  1988年   428篇
  1987年   384篇
  1986年   353篇
  1985年   361篇
  1984年   413篇
  1983年   368篇
  1982年   426篇
  1981年   375篇
  1980年   319篇
  1979年   357篇
  1978年   305篇
  1977年   254篇
  1975年   246篇
  1974年   264篇
  1973年   263篇
  1972年   260篇
  1971年   228篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Micrometeorological methods were applied to measure fluxes of atmospheric ammonia (NH3) to moorlands. Measurements were made in a wide variety of surface conditions and included both Calluna vulgaris (L.) Hull and Eriophorum vaginatum L. dominated sites. NH3 was found to deposit rapidly to all the sites investigated, providing large deposition velocities (Vd, typically 10-40 mm s(-1)) and usually minimal surface resistances (rc). A small number of measurements were made in frozen conditions and suggest a possible exception to this pattern with mean rc of 50-200 s m(-1). The effect of vegetation drying was also investigated and a possible increase in rc observed, though this was small (< 10 s m(-1)). The results are interpreted in terms of the processes controlling exchange; it is shown that NH3 deposition is predominantly to the leaf surfaces and that the net NH3 compensation point approaches zero. Annual estimates show that dry deposition of NH3 is a major source of atmospheric nitrogen to moorland ecosystems. For two typical UK sites subject to background air concentrations, NH3 dry deposition is of similar magnitude to equivalent NH4+ inputs in wet deposition. In the vicinity of emission sources, NH3 dry deposition is expected to dominate inputs of atmospheric nitrogen.  相似文献   
112.
Field studies of chemical changes in surface waters associated with rainfall and snowmelt events have provided evidence of episodic acidification of lakes and streams in Europe and North America. Modelling these chemical changes is particularly challenging because of the variability associated with hydrological transport and chemical transformation processes in catchments. This paper provides a review of mathematical models that have been applied to the problem of episodic acidification. Several empirical approaches, including regression models, mixing models and time series models, support a strong hydrological interpretation of episodic acidification. Regional application of several models has suggested that acidic episodes (in which the acid neutralizing capacity becomes negative) are relatively common in surface waters in several regions of the US that receive acid deposition. Results from physically based models have suggested a lack of understanding of hydrological flowpaths, hydraulic residence times and biogeochemical reactions, particularly those involving aluminum. The ability to better predict episodic chemical responses of surface waters is thus dependent upon elucidation of these and other physical and chemical processes.  相似文献   
113.
Episodic acidification is practically a ubiquitous process in streams and drainage lakes in Canada, Europe and the United States. Depressions of pH are often smaller in systems with low pre-episode pH levels. Studies on European surface waters have reported episodes most frequently with minimum pH levels below 4.5. In Canada and the United States, studies have also reported a number of systems that have had minimum pH levels below 4.5. In all areas, change in water flowpath during hydrological events is a major determinant of episode characteristics. Episodic acidification is also controlled by a combination of other natural and anthropogenic factors. Base cation decreases are an important contributor to episodes in circumneutral streams and lakes. Sulphate pulses are generally important contributors to episodic acidification in Europe and Canada. Nitrate pulses are generally more important to episodic acidification in the Northeast United States. Increases in organic acids contribute to episodes in some streams in all areas. The sea-salt effect is important in near-coastal streams and lakes. In Canada, Europe and the United States, acidic deposition has increased the severity (minimum pH reached) of episodes in some streams and lakes.  相似文献   
114.
Data are presented demonstrating how clearfelling has changed soil and stream water aluminium chemistry. For soil waters, a strong empirical relationship was observed between inorganic aluminium (Al(inorg)) and total inorganic anion (TIA) concentrations. Before felling, chloride and sulphate accounted for the largest proportion of the TIA concentration. After felling, in soils where nitrification was active, nitrate became increasingly important. Where this led to an increase in TIA, Al(inorg) concentrations increased. Over five years, nitrate concentrations have fallen, along with TIA, resulting in a sympathetic decline in Al(inorg). Streams draining clearfelled areas initially became more acid, although chloride and sulphate concentrations decreased. Stream water nitrate concentrations increased soon after felling and remained higher than controls for up to four years. While nitrate concentrations were high, Al(inorg) remained unchanged. Subsequently, as nitrate and TIA decreased, Al(inorg) also declined to concentrations below those in the control stream. Clearfelling upland forests will not necessarily result in immediate improvements in water quality, although long-term benefits may be seen before canopy-closure of the next crop.  相似文献   
115.
Seasonal trend of fog water chemical composition in the Po Valley   总被引:1,自引:0,他引:1  
Fog frequency in the Po Valley, Northern Italy, can be as high as 30% of the time in the fall-winter season. High pollutant concentrations have been measured in fog water samples collected in this area over the past few years. The combined effects of high fog occurrence and high pollutant loading of the fog droplets can determine, in this area, appreciable chemical deposition rates. An automated station for fog water collection was developed, and deployed at the field station of S. Pietro Capofiume, in the eastern part of the Po Valley for an extended period: from the beginning of November 1989 to the end of April 1990. Time-resolved sampling of fog droplets was carried out during all fog events occurring in this period, and chemical analyses were performed on the collected samples. Statistical information on fog occurrence and fog water chemical composition is reported in this paper, and a tentative seasonal deposition budget is calculated for H+, NH4+, NO3- and SO4(2-) ions. The problems connected with fog droplet sampling in sub-freezing conditions are also addressed in the paper.  相似文献   
116.
An introduction to critical loads   总被引:1,自引:0,他引:1  
The critical loads approach to emission controls of gaseous pollutants is a concept with a short but eventful history. Despite difficulties with definitions and agreed values, its acceptance within the UN-ECE Convention on Long Range Transboundary Air Pollution has provided the impetus for developing methods to put critical loads to a practical use-the revision of the UNECE emission protocols for sulphur and nitrogen. Methodologies first focus upon quantifying a pollutant threshold at which harmful effects occur on particular sensitive receptors (usually biological species). This threshold is known as the critical load for deposited pollutants, and as the critical level for gaseous pollutants acting on receptors. To calculate a critical load, biological effects are usually 'translated' to critical chemical values, e.g. harmful effects on fish 'translate' to alkalinity or aluminium concentrations in water; thus, critical load calculations may be based upon the chemistry of a system. Such calculations may be performed using simple, steady-state models, whilst the use of more complex, dynamic models provides an insight into the past and future trends. Maps of critical loads can be drawn using calculated values, and maps of pollutant deposition data will then show geographical areas where critical loads are exceeded. Spatial emission-deposition models can identify sources contributing to areas of excess loads and quantify necessary emission reductions. Optimization procedures applied to such models can derive abatement strategies related to economic costs and critical load effects. The critical load calculations may also be used to underpin the setting of target loads; these are pollutant loads, determined by political agreement, which take account of social, economic and political considerations.  相似文献   
117.
The impact of afforestation on stream-water chemistry for two catchments in central Wales is investigated. Trends in water chemistry are evaluated with forest age progressing at 8-15 years and 20-27 years. To assess the possible exacerbating effect of afforestation on surface-water acidification two moorland catchments are used as controls. Absolute differences in inter-catchment streamwater chemistry are evident. Differences in acidity between the moorland and the young forest site reflect site preparation and modifications to water pathways. Differences in the observed present day chemistry between the young and old forest result from past interactions between deposition changes during forest development. An estimate of the future impact of forest growth was attained from model predictions. The model was calibrated to present day stream-water chemistry and incorporates, cation uptake, evapotranspiration/ concentration effect and increased scavenging of occult and dry deposition. Predictions suggest the pH will decline to 5.3 when the young forest progresses to 20 years of age, which is still much higher than the pH recorded at the older forest site at the age of 20 years.  相似文献   
118.
There is some evidence from southern Britain that shallow groundwaters in non-carbonate lithologies may be affected by acidic deposition. To investigate this, interstitial water profiles down to 12 m have been obtained from unsaturated sands or semi-consolidated sandstones from the Folkestone Beds (Lower Greensand) of Surrey and the Sherwood Sandstone of the West Midlands. The pH of the interstitial waters generally increased with depth and reflected an increase in the base saturation of the exchange complex. Beneath the highly acidic surface soil horizons (pH 3.0-3.5), interstitial waters with a pH of 4.0-4.5 were found down to depths of several metres. The pH progressively increased to around pH 5.5 because of base cation desorption and the weathering of silicate minerals. High concentrations of aluminium (10-20 mg litre(-1)) and other metals (Fe, Mn, Cu, Ni, Co, Zn, Be) were found in the interstitial water in the upper unsaturated zone. Most metal concentrations were strongly pH-dependent but also reflected the geochemical characteristics of the parent sands or sandstones. H+ and trace element concentrations were slightly higher beneath areas of afforestation than beneath heathland. The downward fluxes of solutes have been estimated using rainfall-derived chloride as a non-reactive solute. The profiles retain a record of 10-20 years input allowing the past inputs from SO4 and other species to be estimated using solute/chloride ratios. Cation exchange sites are probably depleted over a period of decades and there can be a significant decrease in the unsaturated zone pH as a result of increased or sustained acidic deposition. The shallow groundwater environment (0-15 m) in non-carbonate terrains is therefore a sensitive environment where high metal concentrations may be generated and may ultimately lead to water quality problems in shallow water supplies.  相似文献   
119.
Air pollutants or some chemicals applied to plant foliage can alter the ecology of the rhizosphere. Experiments were conducted to distinguish among possible foliage-mediated versus soil- or root-mediated effects of acid deposition on microorganism in the rhizosphere. Seedlings of a sorghum x sudangrass hybrid in pots of non-sterile soil-sand mix in a greenhouse were exposed to simulated rain solution adjusted with H2SO4 + HNO3 to pH 4.9, 4.2, 3.5 or 2.8. Solutions were applied as simulated rain to foliage and soil, foliage only (soil covered by plastic, and deionized water applied directly to the soil), or soil only (solution applied directly to the soil). Solutions were applied on 16 days during a 6-week period (1.5 cm deposition in 1 h per application). Plant shoot and root dry weights and population densities of selected types of bacteria, filamentous actinomycetes and fungi in the rhizosphere were quantified after exposures were completed. Deposition of simulated acidic rain onto foliage alone had no effect on plant biomass or microbial population densities in the rhizosphere (colony-forming units per gram of rhizosphere soil). However, plant growth was stimulated and all microbial populations in the rhizosphere increased 3- to 8-fold with increased solution acidity (relative to pH 4.9 solution) when solution penetrated the soil. Statistical analyses indicated that the acid dose-population response relationships for soil-only and foliage-and-soil applications were not different. Thus, no foliage-mediated effect of simulated acidic rain on rhizosphere ecology was detected.  相似文献   
120.
As a consequence of decreases in the emission rate of sulphur in eastern North America in the late 1970s and early 1980s, sulphate deposition in central Ontario declined by about 40%, but has remained constant for about six years. Plastic Lake, a small, dilute lake on the Precambrian shield that the authors have studied since 1979, acidified between the start of the study and about 1986, but since then has not changed. The authors also monitored the chemistry of streamwater draining the Plastic Lake catchment. Water quality of runoff from an upland site improved rapidly (pH and alkalinity increased, SO4(2-) and Al decreased), but two factors offset these improvements. A small wetland area downstream reversed most of these changes, resulting in a constant output of strong acid from the catchment. In addition, in extremely dry years (1983, 1987, 1989) there were very high concentrations of SO4(2-) in the streamwater, suggesting substantial re-oxidation of reduced S in the catchment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号