首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   2篇
  国内免费   1篇
安全科学   2篇
废物处理   2篇
环保管理   19篇
综合类   9篇
基础理论   28篇
污染及防治   15篇
评价与监测   3篇
社会与环境   5篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   8篇
  2012年   6篇
  2011年   9篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
21.
In order to stabilise and contain a toxic metalliferous waste heap at Parc Mine, North Wales, it was covered with 30-40 cm layer of quarry waste in 1977-1978, and sown with a grass/clover seed mixture. This study has examined subsequent metal movement in the cover material and its effect on vegetation. The results, especially when compared with previous observations, give no evidence of upward migration of metals by capillarity in the cover material. Sideways movement of leachate, however, appears to be carrying the metals into the cover material on the sloping sides, giving rise to increasing concentrations of heavy metals in the vegetation and dieback in some places. Root growth on the flat top of the heap is greater than on the slope, but the roots have not penetrated the waste and the contents of Pb, Zn and Cd in surface vegetation remain low. Surface covering of toxic waste with coarse materials restricting capillary rise is therefore a valid reclamation technique so long as lateral movement of toxic leachate can be controlled.  相似文献   
22.
Holocene biomass burning and global dynamics of the carbon cycle   总被引:10,自引:0,他引:10  
Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated approximately 6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500-3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.  相似文献   
23.
24.
Solid waste management (SWM) has become an issue of increasing global concern as urban populations continue to rise and consumption patterns change. The health and environmental implications associated with SWM are mounting in urgency, particularly in the context of developing countries. While systems analyses largely targeting well-defined, engineered systems have been used to help SWM agencies in industrialized countries since the 1960s, collection and removal dominate the SWM sector in developing countries. This review contrasts the history and current paradigms of SWM practices and policies in industrialized countries with the current challenges and complexities faced in developing country SWM. In industrialized countries, public health, environment, resource scarcity, climate change, and public awareness and participation have acted as SWM drivers towards the current paradigm of integrated SWM. However, urbanization, inequality, and economic growth; cultural and socio-economic aspects; policy, governance, and institutional issues; and international influences have complicated SWM in developing countries. This has limited the applicability of approaches that were successful along the SWM development trajectories of industrialized countries. This review demonstrates the importance of founding new SWM approaches for developing country contexts in post-normal science and complex, adaptive systems thinking.  相似文献   
25.
ABSTRACT: Foundation theory and experiences are provided that support the need and value of utilizing a results-oriented approach in developing and evaluating water education programs. This approach includes the ability to determine actual learning outcomes, monitoring learning through time, and discovering attitude and behavior changes that result from program participation. The paper also includes a case study of such an evaluation project in connection with the Groundwater Foundation's annual Children's Groundwater Festival. A challenge is also made to water educators to begin assessing actual impacts of education programs on water quality. Plans for such a study relating to the Foundation's Ground-water Guardian program are outlined.  相似文献   
26.
Although changes in depth to groundwater occur naturally, anthropogenic alterations may exacerbate these fluctuations and, thus, affect vegetation reliant on groundwater. These effects include changes in physiology, structure, and community dynamics, particularly in arid regions where groundwater can be an important water source for many plants. To properly manage ecosystems subject to changes in depth to groundwater, plant responses to both rising and falling groundwater tables must be understood. However, most research has focused exclusively on riparian ecosystems, ignoring regions where groundwater is available to a wider range of species. Here, we review responses of riparian and other species to changes in groundwater levels in arid environments. Although decreasing water tables often result in plant water stress and reduced live biomass, the converse is not necessarily true for rising water tables. Initially, rising water tables kill flooded roots because most species cannot tolerate the associated low oxygen levels. Thus, flooded plants can also experience water stress. Ultimately, individual species responses to either scenario depend on drought and flooding tolerance and the change in root system size and water uptake capacity. However, additional environmental and biological factors can play important roles in the severity of vegetation response to altered groundwater tables. Using the reviewed information, we created two conceptual models to highlight vegetation dynamics in areas with groundwater fluctuations. These models use flow charts to identify key vegetation and ecosystem properties and their responses to changes in groundwater tables to predict community responses. We then incorporated key concepts from these models into EDYS, a comprehensive ecosystem model, to highlight the potential complexity of predicting community change under different fluctuating groundwater scenarios. Such models provide a valuable tool for managing vegetation and groundwater use in areas where groundwater is important to both plants and humans, particularly in the context of climate change.  相似文献   
27.
Fate and transport of per‐ and polyfluoroalkyl substances (PFASs) are complex and are not well understood. Among this class of emerging contaminants, perfluoroalkyl acids (PFAAs) comprising perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) are being studied more frequently than polyfluorinated compounds. PFAAs are persistent in the environment, recalcitrant to biological degradation, and, therefore, widespread. Previous studies have indicated that some PFASs bioaccumulate. The fate and transport of PFAAs can be complicated by the presence of PFAA precursors. The PFAA precursors are defined in this article as those fluorinated chemicals that can be potentially transformed abiotically or biotically into terminal PFCA or PFSA products. Due to potential biotransformation in the environment, PFAA precursors can influence the temporal and lateral distribution of PFAAs in the environment. Presently, only a very small number of PFAA precursors can be quantitatively analyzed by commercial laboratories. For instance, N‐ethyl perfluorooctanesulfonamidoacetic acid and N‐methyl perfluorooctanesulfonamidoacetic acid are the only two precursors included in the most commonly applied PFAS analytical method, U.S. Environmental Protection Agency Method 537. The current commercial laboratory methodologies primarily quantify between 14 and 31 PFASs. As an alternative, a total oxidizable precursor assay (TOPA) was developed to quantify the measurable PFSA and PFCA concentrations after aggressive oxidation converting PFAA precursors abiotically into PFCAs. The difference between PFAA concentrations before and after oxidation can be used to estimate the amount of oxidizable PFAA precursors in the sample. This is one of the first articles that utilized TOPA data to help interpret PFAS fate and transport in the environment.  相似文献   
28.
Population models can be used to place observed toxic effects into an assessment of the impacts on population-level endpoints, which are generally considered to provide greater ecological insight and relevance. We used an individual-based model of mink to evaluate the population-level effects of exposure to polychlorinated biphenyls (PCBs) and the impact that different remediation strategies had on mink population endpoints (population size and extinction risk). Our simulations indicated that the initial population size had a strong impact on mink population dynamics. In addition, mink populations were extremely responsive to clean-up scenarios that were initiated soon after the contamination event. In fact, the rate of PCB clean-up did not have as strong a positive effect on mink as did the initiation of clean-up (start time). We show that population-level approaches can be used to understand adverse effects of contamination and to also explore the potential benefits of various remediation strategies.  相似文献   
29.
Modern society uses massive amounts of energy. Usage rises as population and affluence increase, and energy production and use often have an impact on biodiversity or natural areas. To avoid a business‐as‐usual dependence on coal, oil, and gas over the coming decades, society must map out a future energy mix that incorporates alternative sources. This exercise can lead to radically different opinions on what a sustainable energy portfolio might entail, so an objective assessment of the relative costs and benefits of different energy sources is required. We evaluated the land use, emissions, climate, and cost implications of 3 published but divergent storylines for future energy production, none of which was optimal for all environmental and economic indicators. Using multicriteria decision‐making analysis, we ranked 7 major electricity‐generation sources (coal, gas, nuclear, biomass, hydro, wind, and solar) based on costs and benefits and tested the sensitivity of the rankings to biases stemming from contrasting philosophical ideals. Irrespective of weightings, nuclear and wind energy had the highest benefit‐to‐cost ratio. Although the environmental movement has historically rejected the nuclear energy option, new‐generation reactor technologies that fully recycle waste and incorporate passive safety systems might resolve their concerns and ought to be more widely understood. Because there is no perfect energy source however, conservation professionals ultimately need to take an evidence‐based approach to consider carefully the integrated effects of energy mixes on biodiversity conservation. Trade‐offs and compromises are inevitable and require advocating energy mixes that minimize net environmental damage. Society cannot afford to risk wholesale failure to address energy‐related biodiversity impacts because of preconceived notions and ideals.  相似文献   
30.
Participatory processes in general and also in relation to managing landscape issues are gathering importance mostly due to arguments surrounding legitimacy and effectiveness in decision-making. The main aim of this research, based on a transaction costs perspective, is to present an integrated analytical framework in order to determine individual efforts (time, money), benefits and risks of participants in landscape co-management processes. Furthermore a reflection on the analytical approach developed and arising lessons to be learned for landscape co-management are presented. In the analytical framework benefit-components comprise of factors such as 'contributing to landscape maintenance/development and nature protection', 'representing one's interest group', 'co-deciding on relevant topics', 'providing and broadening one's knowledge' and 'building networks'. The risks of participation are related to a lack of information and agreements, missing support and actual decision-making power. The analytical framework is applied to two case studies in Austria: an EU LIFE-Nature project and a Cultural Landscape Project of the Provincial Government of Lower Austria. Analysis of the effort-benefit-relations provides an indication for a more effective design of co-management. Although the processes are rated as quite adequate, there is a low willingness of participants to commit additional time to co-management processes. In contrast to the Cultural Landscape Project, in the LIFE-Nature project, professionally involved persons participate next to partly and full volunteers. These uneven conditions of participation and an unfair distribution of transaction costs, jeopardize the promising chances co-management bears for landscape governance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号