首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   1篇
  国内免费   4篇
安全科学   7篇
废物处理   5篇
环保管理   26篇
综合类   41篇
基础理论   60篇
污染及防治   98篇
评价与监测   11篇
社会与环境   7篇
灾害及防治   2篇
  2021年   3篇
  2020年   1篇
  2017年   3篇
  2016年   7篇
  2015年   5篇
  2014年   4篇
  2013年   19篇
  2012年   12篇
  2011年   24篇
  2010年   16篇
  2009年   19篇
  2008年   13篇
  2007年   10篇
  2006年   24篇
  2005年   15篇
  2004年   15篇
  2003年   12篇
  2002年   8篇
  2001年   1篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1993年   1篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1965年   3篇
  1963年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
91.
The formation of aromatic amines was investigated using a summarized test (NEDA-test) during the composting of 2,4,6-trinitrotoluene (TNT) contaminated soil. In this test, the aromatic amines were diazolated and then coupled to N-1-Naphthyl-ethylenediamine-dihydrochloride (NEDA) to yield an azo dye which can be monitored photometrically. The test was calibrated for known TNT-metabolites with an active amine-group. Liquid samples from composting- and liquid-culture-experiments were analyzed by HPLC for these known metabolites. Moreover, the samples were monitored by the NEDA-test and the expected extinction of the TNT-metabolites found with amine function were extrapolated with the help of calibration curves. It was shown that substantial differences are obvious between the monitored and extrapolated values. After separation into polar and non-polar aromatic amines, it became clear that these differences are made by the polar aromatic amines. Polar aromatic amines, which are not detectable by presently available analytical tests, were generated during the composting of TNT-contaminated soils. Contaminated stagnant water, which was generated during anaerobization of a compost prephase, was treated aerobically for 70 days in a biofermenter. During this treatment TNT and its known metabolites were eliminated almost entirely. Simultaneously, the toxicity in the Lumis Tox-test decreased drastically. In striking contrast, the sum of aromatic amines decreased only to a minor extent. Moreover, the percentage of polar compounds from total amount of aromatic amines increased drastically from 48% to more than 95%. At present, the chemical identification of these polar compounds is still missing and is the object for further research.  相似文献   
92.
 The distribution of partial pressure of carbon dioxide and the concentrations of nitrous oxide and methane were investigated in a cold water filament near the coastal upwelling region off Oman at the beginning of the southwest monsoon in 1997. The results suggest that such filaments are regions of intense biogeochemical activity which may affect the marine cycling of climatically relevant trace gases. Received: 1 March 1999 / Accepted in revised form: 16 June 1999  相似文献   
93.
In this study, a mathematical model was established to predict the formation of the soluble microbial product (SMP) in a submerged membrane bioreactor. The developed model was calibrated under the reference condition. Simulation results were in good agreement with the measured results under the reference condition. The calibrated model was then used in the scenario studies to evaluate the effect of three chosen operating parameters: hydraulic retention time (HRT), dissolved oxygen concentration, and sludge retention time (SRT). Simulation results revealed that the SMP dominated the soluble organic substances in the supernatant. The scenario studies also revealed that the HRT can be decreased to 1 h without deteriorating the effluent quality; dissolved oxygen concentration in the reactor can be kept at 2–3 mg/L to maintain the effluent quality, reduce the content of SMP, and minimize operating costs; the optimal SRT can be controlled to 10–15 d to achieve complete nitrification process, less membrane fouling potential, and acceptable organic removal efficiency.  相似文献   
94.
The Mediterranean and neighboring countries are already experiencing a broad range of natural and man-made threats to water security. According to climate projections, the region is at risk due to its pronounced susceptibility to changes in the hydrological budget and extremes. Such changes are expected to have strong impacts on the management of water resources and on key strategic sectors of regional economies. Related developments have an increased capacity to exacerbate tensions, and even intra- and inter-state conflict among social, political, ecological and economic actors. Thus, effective adaptation and prevention policy measures call for multi-disciplinary analysis and action.This review paper presents the current state-of-the-art on research related to climate change impacts upon water resources and security from an ecological, economic and social angle. It provides perspectives for current and upcoming research needs and describes the challenges and potential of integrating and clustering multi-disciplinary research interests in complex and interwoven human-environment systems and its contribution to the upcoming 5th assessment report of the IPCC.  相似文献   
95.
Contamination caused by pesticides in agriculture is a source of environmental poor water quality in some of the European Union countries. Without treatment or targeted mitigation, this pollution is diffused in the environment. Pesticides and some metabolites are of increasing concern because of their potential impacts on the environment, wildlife and human health. Within the context of the European Union (EU) water framework directive context to promote low pesticide-input farming and best management practices, the EU LIFE project ArtWET assessed the efficiency of ecological bioengineering methods using different artificial wetland (AW) prototypes throughout Europe. We optimized physical and biological processes to mitigate agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Mitigation solutions were implemented at full-scale demonstration and experimental sites. We tested various bioremediation methods at seven experimental sites. These sites involved (1) experimental prototypes, such as vegetated ditches, a forest microcosm and 12 wetland mesocosms, and (2) demonstration prototypes: vegetated ditches, three detention ponds enhanced with technology of constructed wetlands, an outdoor bioreactor and a biomassbed. This set up provides a variety of hydrologic conditions, with some systems permanently flooded and others temporarily flooded. It also allowed to study the processes both in field and controlled conditions. In order to compare the efficiency of the wetlands, mass balances at the inlet and outlet of the artificial wetland will be used, taking into account the partition of the studied compound in water, sediments, plants, and suspended solids. The literature background necessary to harmonize the interdisciplinary work is reviewed here and the theoretical framework regarding pesticide removal mechanisms in artificial wetland is discussed. The development and the implementation of innovative approaches concerning various water quality sampling strategies for pesticide load estimates during flood, specific biological endpoints, innovative bioprocess applied to herbicide and copper mitigation to enhance the pesticide retention time within the artificial wetland, fate and transport using a 2D mixed hybrid finite element model are introduced. These future results will be useful to optimize hydraulic functioning, e.g., pesticide resident time, and biogeochemical conditions, e.g., dissipation, inside the artificial wetlands. Hydraulic retention times are generally too low to allow an optimized adsorption on sediment and organic materials accumulated in artificial wetlands. Absorption by plants is not either effective. The control of the hydraulic design and the use of adsorbing materials can be useful to increase the pesticides residence time and the contact between pesticides and biocatalyzers. Pesticide fluxes can be reduced by 50–80% when hydraulic pathways in artificial wetlands are optimized by increasing ten times the retention time, by recirculation of water, and by deceleration of the flow. Thus, using a bioremediation method should lead to an almost complete disappearance of pesticides pollution. To retain and treat the agricultural nonpoint-source po a major stake for a sustainable development.  相似文献   
96.
Pickering CM  Buckley RC 《Ambio》2010,39(5-6):430-438
Skier numbers, and revenues for the multi-billion-dollar ski industry, are highly sensitive to snow cover. Previous research projected that under climate change, natural snow cover will become inadequate at 65% of sites in the Australian ski resorts by 2020. Resorts plan to compensate for reduced snowfall through additional snowmaking. For the six main resorts, however, this would require over 700 additional snow guns by 2020, requiring approximately US $100 million in capital investment, and 2,500-3,300 ML of water per month, as well as increased energy consumption. This is not practically feasible, especially as less water will be available. Therefore, low altitude ski resorts such as these may not be able to rely on snowmaking even for short-term adaptation to climate change. Instead, they are likely to seek conversion to summer activities and increased property development.  相似文献   
97.
98.
Cai M  Xie Z  Möller A  Yin Z  Huang P  Cai M  Yang H  Sturm R  He J  Ebinghaus R 《Chemosphere》2012,87(9):989-997
Neutral polyfluorinated alkyl substances (PFASs) were measured in high-volume air samples collected on board the research vessel Snow Dragon during the 4th Chinese National Arctic Expedition from the Japan Sea to the Arctic Ocean in 2010. Four volatile and semi-volatile PFASs (fluorotelomer alcohols (FTOHs), fluorotelomer acids (FTAs), perfluoroalkyl sulfonamides (FASAs), and sulfonamidoethanols (FASEs)) were analyzed respectively in the gas and particle phases. FTOHs were the dominant PFASs in the gas phase (61-358 pg m−3), followed by FTAs (5.2-47.9 pg m−3), FASEs (1.9-15.0 pg m−3), and FASAs (0.5-2.1 pg m−3). In the particle phase, the dominant PFAS class was FTOHs (1.0-9.9 pg m−3). The particle-associated fraction followed the general trend of FASEs > FASAs > FTOHs. Compared with other atmospheric PFAS measurements, the ranges of concentrations of ∑FTOH in this study were similar to those reported from Toronto, north America (urban), the northeast Atlantic Ocean, and northern Germany. Significant correlations between FASEs in the gas phase and ambient air temperature indicate that cold surfaces such as sea-ice, snowpack, and surface seawater influence atmospheric FASEs.  相似文献   
99.
Climate change scenarios predict lower flow rates during summer that may lead to higher proportions of wastewater in small and medium sized streams. Moreover, micropollutants (e.g. pharmaceuticals and other contaminants) continuously enter aquatic environments via treated wastewater. However, there is a paucity of knowledge, whether extended exposure to secondary treated wastewater disrupts important ecosystem functions, e.g. leaf breakdown. Therefore, the amphipod shredder Gammarus fossarum was exposed to natural stream water (n = 34) and secondary treated wastewater (n = 32) for four weeks in a semi-static test system under laboratory conditions. G. fossarum exposed to wastewater showed significant reductions in feeding rate (25%), absolute consumption (35%), food assimilation (50%), dry weight (18%) and lipid content (22%). Thus, high proportions of wastewater in the stream flow may affect both the breakdown rates of leaf material and thus the availability of energy for the aquatic food web as well as the energy budget of G. fossarum.  相似文献   
100.
To investigate waste water treatment plants (WWTPs) as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two WWTPs and two reference sites using high volume samplers. Contaminants were accumulated on glass fiber filters and PUF/XAD-2/PUF cartridges, extracted compound-dependent by MTBE/acetone, methanol, or hexane/acetone and detected by GC-MS or HPLC-MS/MS. Total (gas + particle phase) concentrations ranged from 97 to 1004 pg m−3 (neutral PFCs), <MQL to 13 pg m−3 (ionic PFCs), 5781 to 482,163 pg m−3 (musk fragrances) and <1 to 27 pg m−3 (PBDEs) and were usually higher at WWTPs than at corresponding reference sites, revealing that WWTPs can be regarded as sources of musk fragrances, PFCs and probably PBDEs to the atmosphere. Different concentrations at the two WWTPs indicated an influence of WWTP size or waste water origin on emitted contaminant amounts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号