首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2670篇
  免费   76篇
  国内免费   23篇
安全科学   123篇
废物处理   109篇
环保管理   809篇
综合类   257篇
基础理论   631篇
环境理论   1篇
污染及防治   568篇
评价与监测   157篇
社会与环境   79篇
灾害及防治   35篇
  2023年   14篇
  2022年   20篇
  2021年   28篇
  2020年   20篇
  2019年   32篇
  2018年   50篇
  2017年   46篇
  2016年   61篇
  2015年   53篇
  2014年   53篇
  2013年   287篇
  2012年   107篇
  2011年   137篇
  2010年   110篇
  2009年   119篇
  2008年   155篇
  2007年   144篇
  2006年   126篇
  2005年   95篇
  2004年   77篇
  2003年   97篇
  2002年   86篇
  2001年   56篇
  2000年   45篇
  1999年   24篇
  1998年   43篇
  1997年   28篇
  1996年   38篇
  1995年   46篇
  1994年   31篇
  1993年   44篇
  1992年   36篇
  1991年   15篇
  1990年   23篇
  1989年   17篇
  1988年   24篇
  1987年   15篇
  1986年   19篇
  1985年   28篇
  1984年   23篇
  1983年   24篇
  1982年   34篇
  1981年   34篇
  1980年   32篇
  1979年   21篇
  1978年   23篇
  1977年   11篇
  1976年   8篇
  1974年   7篇
  1972年   9篇
排序方式: 共有2769条查询结果,搜索用时 15 毫秒
981.
982.
983.
984.
Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term ‘common-garden’ experiment to disentangle the effects of species’ wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.  相似文献   
985.
Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year?1) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.  相似文献   
986.
Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan   总被引:1,自引:0,他引:1  
Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO(2)) removal (CDR), which removes CO(2) from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research.  相似文献   
987.
High resolution direct-push profiling over short vertical distances was used to investigate CH(4) attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH(4) and CO(2), and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in δ(13)C(CH4) from an average of -57.6‰ (±1.7‰) in the methanogenic zone to -39.6‰ (±8.7‰) at 105m downgradient, strongly suggest CH(4) attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5m below the water table suggesting that transport of O(2) across the water table is leading to aerobic degradation of CH(4) at this interface. Dissolved N(2) concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O(2) through aerobic degradation of CH(4) or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O(2) rich recharge water were important O(2) transport mechanisms.  相似文献   
988.
Monty CN  Londoño NJ  Masel RI 《Chemosphere》2011,82(11):1644-1648
This work demonstrates the success of a recently developed technique in chemical amplification, non-biological inhibition-based sensing (NIBS), for the detection of toxic arsenic compounds. Screening for toxic arsenic compounds is especially important due to their prevalence in wastewater and water sources. The detection method presented in this work amplifies the chemical response of toxic arsenic compounds by developing a sensor chemistry where the analyte inhibits, rather than enhances, the rate of a catalytic reaction. This technique mimics the work done with enzyme inhibition; however, using non-biological molecules allows for selective detection without the shelf-life issue associated with biological molecules. Using NIBS we find that we can enhance the sensitivity of the system by two orders of magnitude with no apparent loss in selectivity. This work demonstrates the versatility of NIBS, showing that the technique can be of general use for the detection of toxic compounds.  相似文献   
989.
Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP reaction products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions with localized effects of the fine lithofacies having the largest impact on U(VI) surface complexation. The ability to model the comprehensive biogeochemical reaction network, and spatially and temporally variable processes, properties, and conditions controlling uranium behavior during engineered bioremediation in the naturally complex Rifle IFRC subsurface system required a subsurface simulator that could use the large memory and computational performance of a massively parallel computer. In this case, the eSTOMP simulator, operating on 128 processor cores for 12h, was used to simulate the 110-day field experiment and 50 days of post-biostimulation behavior.  相似文献   
990.
The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gårdsjön, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha−1 yr−1 as NH4NO3 to the ambient 9 kg N ha−1 yr−1 in fortnightly doses by means of sprinkling system. The fraction of input N lost to runoff has increased from 0% to 10%. Increased concentrations of NO3 in runoff partially offset the decreasing concentrations of SO4 and slowed ecosystem recovery from acid deposition. From 1990-2002, about 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. The soil N pool increased by 5%. N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号