首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   2篇
环保管理   4篇
综合类   3篇
基础理论   4篇
污染及防治   6篇
评价与监测   2篇
  2023年   1篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2008年   3篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
21.
In this study, cellulose fibers were removed from crop by-products using a combination of sodium hydroxide treatment followed by acidified sodium chlorite treatment. The objective was to obtain high recovery of cellulose by optimizing treatment conditions with sodium hydroxide (5–20%, 25–75 °C and 2–10 h) followed by acidified sodium chlorite (1.7%, 75 °C for 2–6 h) to remove maximum lignin and hemicellulose, as well as to investigate the effect of lignin content of the starting materials on the treatment efficiency. Samples were characterized for their chemical composition, crystallinity, thermal behavior and morphology to evaluate the effects of treatments on the fibers’ structure. The optimum sodium hydroxide treatment conditions for maximum cellulose recovery was at 15% NaOH concentration, 99 °C and 6 h. Subsequent acidified sodium chlorite treatment at 75 °C was found to be effective in removing both hemicellulose and lignin, resulting in higher recovery of cellulose in lupin hull (~?95%) and canola straw (~?93%). The resultant cellulose fibers of both crop by-products had increased crystallinity without changing cellulose I structure (~?68–73%). Improved thermal stabilities were observed with increased onset of degradation temperatures up to 307–318 °C. Morphological investigations validated the effectiveness of treatments, revealing disrupted cell wall matrix and increased surface area due to the removal of non-cellulosics. The results suggest that the optimized combination of sodium hydroxide and acidified sodium chlorite treatments could be effectively used for the isolation of cellulose fibers from sweet blue lupin hull and canola straw, which find a great number of uses in a wide range of industrial applications.  相似文献   
22.
ABSTRACT: The proportionality coefficient, K, and the weighing parameter, X, required for the Muskingum-Cunge Flood Routing Method are dependent on the hydraulic characteristics of the channel and the dynamic characteristic of the flood wave. This work focuses on the determination of the Muskingum-Cunge Flood Routing Method parameters for streams where measured hydrographs are not available (i.e., ungaged streams) with floods that stay within the channel banks. In the present work, a gaged creek was used and a dynamic wave was routed to test the reliability of the parameters determined through the Schaefer and Stevens technique (Schaefer and Stevens, 1978). The predicted outflow hydrographs are compared to the hydrographs obtained for the same stream determined with the Muskingum Routing option of the HEC-1 program. Cypress Creek in Harris County, Texas, was the model for this work; and the corresponding data were extracted from the Grant Road and Westfield, Texas, USGS gaging stations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号