首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   0篇
  国内免费   5篇
安全科学   9篇
废物处理   4篇
环保管理   12篇
综合类   20篇
基础理论   15篇
污染及防治   35篇
评价与监测   13篇
社会与环境   13篇
  2022年   7篇
  2021年   6篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有121条查询结果,搜索用时 156 毫秒
81.
This paper summarizes the results of a yearlong continuous measurements of gaseous pollutants, NO, NO2, NOx and O3 in the ambient air at Kathmandu valley. Measured concentration of the pollutants in study area is a function of time. NO, NO2 and O3 peak occurred in succession in presence of sunlight. At the time of maximum O3 concentration most of the NOx are utilized. The diurnal cycle of ground level ozone concentrations, revealed mid-day peak with lower nocturnal concentrations and inverse relationship exists between O3 and NOx, which are evidences of photochemical O3 formation. The observed ground level ozone during monsoon is slight lower than the pre-monsoon value. Further, lack of rainfall and higher temperature, solar radiation in the pre-monsoon have given rise to the gradual build up of ozone and it is lowest during winter. Ground level ozone concentrations measured during bandha (general strike) and weekend are 19% and 13% higher than those measured during weekdays. The most effective ozone abatement strategy for Kathmandu Valley may be control of NOx emissions.  相似文献   
82.
In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulation for long-term periods.The simulations were performed for January,February,March,and July,2005 with a coarse 3-kin and a nested fine 1-km grid domains. Results of the simulations were compared with data from ten meteorological observatories,fog sampling site in Mt.Rokko,and visibility measu...  相似文献   
83.
USEPA’s UNMIX, positive matrix factorization (PMF) and effective variance-chemical mass balance (EV-CMB) receptor models were applied to chemically speciated profiles of 125 indoor PM2.5 measurements, sampled longitudinally during 2012–2013 in low-income group households of Central India which uses solid fuels for cooking practices. Three step source apportionment studies were carried out to generate more confident source characterization. Firstly, UNMIX6.0 extracted initial number of source factors, which were used to execute PMF5.0 to extract source-factor profiles in second step. Finally, factor analog locally derived source profiles were supplemented to EV-CMB8.2 with indoor receptor PM2.5 chemical profile to evaluate source contribution estimates (SCEs). The results of combined use of three receptor models clearly describe that UNMIX and PMF are useful tool to extract types of source categories within small receptor dataset and EV-CMB can pick those locally derived source profiles for source apportionment which are analog to PMF-extracted source categories. The source apportionment results have also shown three fold higher relative contribution of solid fuel burning emissions to indoor PM2.5 compared to those measurements reported for normal households with LPG stoves. The previously reported influential source marker species were found to be comparatively similar to those extracted from PMF fingerprint plots. The comparison between PMF and CMB SCEs results were also found to be qualitatively similar. The performance fit measures of all three receptor models were cross-verified and validated and support each other to gain confidence in source apportionment results.  相似文献   
84.
The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10–25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO2) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines.
Graphical abstract ?
  相似文献   
85.

With the boom in industrialization, there is an increase in the level of heavy metals in the soil which drastically affect the growth and development of plants. Nickel is an essential micronutrient for plant growth and development, but elevated level of Ni causes stunted growth, chlorosis, nutrient imbalance, and alterations in the defense mechanism of plants in terms of accumulation of osmolytes or change in enzyme activities like guiacol peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). Ni-induced toxic response was studied in seedlings of finger millet, pearl millet, and oats in terms of seedling growth, lipid peroxidation, total chlorophyll, proline content, and enzymatic activities. On the basis of germination and growth parameters of the seedling, finger millet was found to be the most tolerant. Nickel accumulation was markedly lower in the shoots as compared to the roots, which was the highest in finger millet and the lowest in shoots of oats. Plants treated with a high concentration of Ni showed significant reduction in chlorophyll and increase in proline content. Considerable difference in level of malondialdehyde (MDA) content and activity of antioxidative enzymes indicates generation of redox imbalance in plants due to Ni-induced stress. Elevated activities of POD and SOD were observed with high concentrations of Ni while CAT activity was found to be reduced. It was observed that finger millet has higher capability to maintain homeostasis by keeping the balance between accumulation and ROS scavenging system than pearl millet and oats. The data provide insight into the physiological and biochemical changes in plants adapted to survive in Ni-rich environment. This study will help in selecting the more suitable crop species to be grown on Ni-rich soils.

  相似文献   
86.
This article presents a methodology to calculate the social cost of sustainability metrics with environmental footprint evaluation tools. Measuring the impacts of a remediation project on society is challenging because the methods by which these impacts can be measured have not been established. To perform a complete sustainability assessment of a project's life cycle, costs borne by society in terms of environmental, economic, and community impacts must be evaluated. Two knowledge gaps have been identified among the sustainability assessments currently being performed during a remediation project's life cycle: (1) lack of methodologies available to evaluate impacts on the socioeconomic aspects of remediation and (2) lack of sustainability assessments conducted during the site characterization stage. Sustainability assessments were conducted on two case studies using the methodology proposed in this article: one during the site characterization stage and the other during remedial action. The results of this study demonstrated that costs borne by society from a remediation project are significant and metric specific. This study also highlighted the benefits of conducting a sustainability assessment at the site characterization stage using environmental footprint analysis tools, cost benefit analysis, and an evaluation of costs borne by society. © 2013 Wiley Periodicals, Inc.  相似文献   
87.
Nitrogen dioxide (NO2) plays a key role in the chemistry of the atmosphere and is emitted mainly by combustion processes. These emissions have been increasing over India over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of NO2 over this region. We thus take recourse to satellite data and compare tropospheric NO2 column abundances simulated by a chemical transport model, MOZART, with data from the Global Ozone Monitoring Experiment (GOME) for a few locations in India that have seen a rapid economic growth in the last decade. The model generally simulates higher columnar abundances of NO2 compared to GOME observations and does not reproduce the features of the observed seasonal behaviour. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data. The ten year data (1996–2006) from GOME and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) show increasing trends for Indian cities where rapid industrial and vehicular traffic growth has been observed during this period.  相似文献   
88.

Background, aim, and scope  

The focus of the present study is to know the potential of bacterial isolate for tannic acid degradation at low temperature. Also, we tried to evaluate the suitability of phytotoxicity testing protocol for the determination of tannic acid toxicity.  相似文献   
89.
90.
Carbon Sequestration Potential of Indian Forests   总被引:3,自引:0,他引:3  
The forestry sector can not only sustain its carbon but also has the potential to absorb carbon from the atmosphere. India has maintained approximately 64 Mha of forest cover for the last decade. The rate of afforestation in India is one of the highest among the tropical countries, currently estimated to be 2 Mha per annum. The annual productivity has increased from 0.7 m3 per hactare in 1985 to 1.37 m3 per hectare in 1995. Increase in annual productivity directly indicates an increase in forest biomass and hence higher carbon sequestration potential. The carbon pool for the Indian forests is estimated to be 2026.72 Mt for the year 1995. Estimates of annual carbon uptake increment suggest that our forests and plantations have been able to remove at least 0.125 Gt of CO2 from the atmosphere in the year 1995. Assuming that the present forest cover in India will sustain itself with a marginal annual increase by 0.5 Mha in area of plantations, we can expect our forests to continue to act as a net carbon sink in future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号