首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
安全科学   2篇
废物处理   11篇
环保管理   1篇
综合类   14篇
基础理论   9篇
污染及防治   17篇
评价与监测   8篇
社会与环境   4篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   7篇
  2009年   8篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
61.
Availability of food resources and individual characteristics can influence foraging behaviour, which can differ between males and females, leading to different patterns of food/habitat selection. In dimorphic species, females are usually more selective in food choice, show greater bite rates and spend more time foraging than males. We evaluated sexual differences in foraging behaviour in Apennine chamois Rupicapra pyrenaica ornata, during the warm season, before the rut. Both sexes selected nutritious vegetation patches and spent a comparable amount of time feeding. However, males had a significantly greater feeding intensity (bite rate) and a lower search effort for feeding (step rate), as well as they spent more time lying down than females. Females selected foraging sites closer to refuge areas than males. In chamois, sexual size dimorphism is seasonal, being negligible in winter–spring, but increasing to 30–40 % in autumn. Our results suggest that males enhance their energy and mass gain by increasing their food intake rate during the warm season, to face the costs of the mating season (November). Conversely, females seem to prioritize a fine-scale selection of vegetation and the protection of offspring. A great food intake rate of males in the warm season could have developed as a behavioural adaptation leading herbivores to the evolutionary transition from year-round monomorphism to permanent dimorphism, through seasonal dimorphism.  相似文献   
62.
This paper investigates the impacts of different turbulence models on the biological state at an ocean station in the northern Adriatic sea, named S3, comparing them with other uncertainties inherent to coupled physical–biological simulations. The numerical tool is a 1-D model resulting from the coupling of two advanced numerical models. The hydrodynamic part is modelled using the General Ocean Turbulence Model (www.gotm.net), in a version adopting state-of-the-art second-moment Turbulence Closure Models (TCMs). Marine biogeochemistry is parameterized with the Biogeochemical Flux Model (http://www.bo.ingv.it/bfm), which is a direct descendant of ERSEM (European Regional Sea Ecosystem Model). Results, obtained by forcing the model with hourly wind and solar radiation data and assimilating salinity casts, are compared against monthly observations made at the station during 2000–2001. Provided that modern second-moment TCMs are employed, the comparisons indicate that both the physical and the biological dynamics are relatively insensitive to the choice of the particular scheme adopted, suggesting that TCMs have finally ‘converged’ in recent years. As a further example, the choice of the nutrient boundary conditions has an impact on the system evolution that is more significant than the choice of the specific TCM, therefore representing a possible limitation of the 1-D model applied to stations located in a Region of Freshwater Influence. The 1-D model simulates the onset and intensity of the spring–summer bloom quite well, although the duration of the bloom is not as prolonged as in the data. Since local dynamics appears unable to sustain the bloom conditions well into summer, phytoplankton at the station was most likely influenced by river input or advection processes, an aspect that was not found when the S3 behaviour was adequately modelled using climatological forcings. When the focus is in predicting high-frequency dynamics, it is more likely that lateral advection cannot be neglected. While the physical state can be satisfactorily estimated at these short time scales, the accurate estimation of the biological state in coastal regions still appears as rather elusive.  相似文献   
63.
Communication plays a large role in resource competition, especially for potential mates, and is used by members of the competing sex to assess each other, and simultaneously to evaluate the other sex, which may be advertising its status. To assess the effects of female advertisement on male aggression, males of the decapod Aegla were paired according to body and armament size. Males were left to interact in five different treatments: with receptive females that could use both chemical and visual cues, non-receptive females that could use both types of cues, receptive females that could use only one cue, or no female in the aquarium. Fight duration, time spent in the most aggressive acts, latency period, number of antennal whips/fight duration, and time spent near the female were analyzed. The males had shorter and less intense confrontations when there was a receptive female that could signal with at least one modality. Winning males spent significantly more time near the receptive female only when both chemical and visual cues were present, when compared to the other treatments. The low level of aggression shown by the males may be related to information asymmetry due to the female’s choice: only the preferred male would receive information from the female, or males could compete for other resources that attract females. However, male aggression was modified by the presence of female chemical cues, whereas mate guarding was initiated only when both chemical and visual cues were present. Hence, male aggression can be downregulated by female receptivity.  相似文献   
64.
Environmental Science and Pollution Research - Currently, the considerable decline in fossil fuel resources and the high rise in vehicle emissions have prompted researchers and governments to...  相似文献   
65.
English is widely recognized as the language of science, and English-language publications (ELPs) are rapidly increasing. It is often assumed that the number of non-ELPs is decreasing. This assumption contributes to the underuse of non-ELPs in conservation science, practice, and policy, especially at the international level. However, the number of conservation articles published in different languages is poorly documented. Using local and international search systems, we searched for scientific articles on biodiversity conservation published from 1980 to 2018 in English and 15 non-English languages. We compared the growth rate in publications across languages. In 12 of the 15 non-English languages, published conservation articles significantly increased every year over the past 39 years, at a rate similar to English-language articles. The other three languages showed contrasting results, depending on the search system. Since the 1990s, conservation science articles in most languages increased exponentially. The variation in the number of non-English-language articles identified among the search systems differed markedly (e.g., for simplified Chinese, 11,148 articles returned with local search system and 803 with Scopus). Google Scholar and local literature search systems returned the most articles for 11 and 4 non-English languages, respectively. However, the proportion of peer-reviewed conservation articles published in non-English languages was highest in Scopus, followed by Web of Science and local search systems, and lowest in Google Scholar. About 20% of the sampled non-English-language articles provided no title or abstract in English; thus, in theory, they were undiscoverable with English keywords. Possible reasons for this include language barriers and the need to disseminate research in countries where English is not widely spoken. Given the known biases in statistical methods and study characteristics between English- and non-English-language studies, non-English-language articles will continue to play an important role in improving the understanding of biodiversity and its conservation.  相似文献   
66.
2-Ethylhexanol has been identified as a volatile organic compound (VOC) that contributes to the deterioration of indoor air quality. Plasticizers are common components of dust and building materials and are shown to be degraded by a variety of bacteria and fungi to produce 2-ethylhexanol and other metabolites. Of these, the 2-ethylhexanol has significant volatility and was observed in appreciable quantities. The degree to which 2-ethylhexanol is observed as a VOC in air samples would be limited by the fact that many of the microorganisms that are capable of producing this compound are also able to oxidize it to 2-ethylhexanoic acid, which is much less volatile. It is argued that an abiotic degradation mechanism of plasticizers that results in the generation of 2-ethylhexanol is unlikely and, if this did occur, other metabolites should have been observed. Thus, the microbial degradation of plasticizers is the most likely source of 2-ethylhexanol in indoor air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号