首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1187篇
  免费   8篇
  国内免费   28篇
安全科学   11篇
废物处理   57篇
环保管理   151篇
综合类   100篇
基础理论   203篇
污染及防治   420篇
评价与监测   215篇
社会与环境   64篇
灾害及防治   2篇
  2023年   34篇
  2022年   75篇
  2021年   62篇
  2020年   12篇
  2019年   27篇
  2018年   39篇
  2017年   34篇
  2016年   54篇
  2015年   28篇
  2014年   50篇
  2013年   155篇
  2012年   60篇
  2011年   63篇
  2010年   50篇
  2009年   47篇
  2008年   65篇
  2007年   44篇
  2006年   43篇
  2005年   34篇
  2004年   33篇
  2003年   29篇
  2002年   21篇
  2001年   17篇
  2000年   9篇
  1999年   10篇
  1998年   4篇
  1997年   7篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   8篇
  1986年   4篇
  1982年   5篇
  1978年   5篇
  1976年   7篇
  1975年   4篇
  1974年   2篇
  1972年   3篇
  1969年   5篇
  1968年   4篇
  1965年   3篇
  1959年   2篇
  1957年   3篇
  1956年   2篇
排序方式: 共有1223条查询结果,搜索用时 390 毫秒
491.
Peat, ice deposits and aquatic sediments, which have been used as a geochemical monitor of atmospheric heavy metal pollution until now, are open and dynamic systems and can be easily affected by climatic variations. In contrast, bricks, which are more compact, can act as a better geochemical monitor. Analysis of Cu, Cr, Ni, Pb and Zn in scores of soil and brick (baked/unbaked) samples, collected from a large area in and around a rapidly growing Indian city, Agra, reveals approximately similar concentrations in soils and bricks, thereby showing insignificant fractionation of these metals during brick making. Further, metals concentration in the core of bricks remains unaffected by any significant amount of acidic and alkaline rain. Thus, the feasibility of a novel role of bricks as a geochemical monitor of atmospheric heavy metal pollution has been tested. Utilizing this concept, an attempt has also been made to trace the history of atmospheric copper depositions in the soils of Agra during the last 100 years.  相似文献   
492.
Multiple residues of organochlorine insecticides were monitored in Ganga river water in the district of Farrukhabad in northern Indian for one year (1991–1992). Almost all the samples were found to be contaminated with residues of HCH and DDT. Residues of aldrin, endosulfan and heptachlor were also detected in a larger number of samples. Alpha-HCH, pp-DDT and alpha-endosulfan were found to dominate over the other isomers of HCH, DDT and endosulfan, respectively. Enhanced percentage of beta-HCH suggests accumulation of this isomer in the aquatic environment. The average concentration of aldrin was more than that of dieldrin. Aldrin residues often exceeded the WHO guideline value for drinking water and the concentration of heptachlor occasionally exceeded the specified limits.  相似文献   
493.
A study of temporal variation in methane efflux from the rice-fields indicated that weeds could modulate the CH4 emission by transporting atmospheric O2 more efficiently than rice plants to the rhizosphere, which suppressed CH4 formation in the oxic condition, inhibiting methanogenic activity. A more oxic environment in the sediment was reflected by the higher redox potential in the weed growing plots. Besides, cultivar differences in methane efflux might be attributed to various plant activities, more importantly root exudation, development of aerenchyma and the biomass. Peak emission of CH4 at the flowering stage in all the rice cultivars was associated with maximum extension of root mat, releasing exudates, which serve as carbon source for the methanogenic bacteria for CH4 formation.  相似文献   
494.
Fission track technique has been used for uranium estimation in drinking water samples collected from some areas of Amritsar District, Punjab, India. The uranium concentration in water samples is found to vary from 3.19 to 45.59 microg l(-1). Some of the physico-chemical properties such as pH, conductance and hardness and the content of calcium, magnesium, total dissolved solids (TDS), sodium, potassium, chloride, nitrate and heavy metals viz. zinc, cadmium, lead and copper have been determined in water samples. An attempt has been made to correlate uranium concentration with these water quality parameters. A positive correlation of conductance, nitrate, chloride, sodium, potassium, magnesium, TDS, calcium and hardness with uranium concentration has been observed. However, no correlation has been observed between the concentration of uranium and the heavy metals analysed.  相似文献   
495.
Environment, Development and Sustainability - Weather variability over the long run exhibits the trends of change in climate and forewarns for development and deployment of adaptation measures....  相似文献   
496.
The arsenic tolerant bacterial strains Staphylococcus arlettae(NBRIEAG-6), Staphylococcus sp.(NBRIEAG-8) and Brevibacillus sp.(NBRIEAG-9) were tested for their roles in enhancing plant growth and induction of stress-related enzymes in rice(Oryza sativa L. cv. NDR-359) plants at two different concentrations, 30 and 15 mg/kg of As(V) and As(III), respectively. An experiment was conducted to test the effect of these strains on plant growth promotion and arsenic uptake. We found 30%–40% reduction in total As uptake in bacteria-inoculated plants, with increased plant growth parameters compared to non-inoculated plants. Moreover, the bacteria-inoculated plants showed reduced activity of total glutathione(GSH) and glutathione reductase(GR) compared to their respective controls, which suggests the bacteria-mediated reduction of oxidative stress in plants. Thus, these strains were found to be beneficial in terms of the biochemical and physiological status of the plants under arsenic stress conditions.Furthermore, one-way ANOVA and principal component analysis(PCA) on enzymatic and non-enzymatic assays also revealed clear variations. The results support the distinction between control and treatments in both shoots and roots. Therefore, this study demonstrates the potential of rhizobacteria in alleviating arsenic stress in rice plants.  相似文献   
497.
Coal is the most abundant hydrocarbon energy source in the world. It also produces a very high volume of greenhouse gases using the current production technology. It is more difficult to handle and transport than crude oil and natural gas. We face a challenge: how can we access this abundant resource and at the same time mitigate global environmental challenges, in particular, the production of carbon dioxide (CO2)? The editors of this special edition journal consider the opportunity to increase the utilization of this globally abundant resource and recover it in an environmentally sustainable manner. Underground coal gasification (UCG) is the recovery of energy from coal by gasifying the coal underground. This  process produces a high calorific synthesis gas, which can be applied for electricity generation and/or the production of fuels and chemicals. The carbon dioxide emissions are relatively pure and the surface facilities are limited in their environmental footprint. Unused carbon is readily separated and can be geo-sequester in the resulting cavity. The cavity is also being considered as a potential option to mitigate against change impacts of other sources of carbon dioxide (CO2) emissions. These outcomes mean there is an opportunity to provide developing and developed countries a source of low-cost clean energy. Further, the burning of coal in situ means that the traditional dangers of underground mining and extraction are reduced, a higher percentage of the coal is actually recovered and the resulting cavern creates the potential for a long-term storage solution of the gasification wastes. The process is not without challenges. Ground subsidence and groundwater pollution are two potential environmental impacts that need to be averted for this process to be acceptable. It is essential to advance the understanding of this practice and this special edition journal seeks to share the progress that scientists are making in this dynamic field. The technical challenges are being addressed by researchers around the world who work to resolve and understand how burning coal underground impacts the geology, the surface land, and ground water both in the short and the long term. This special issue reviews the process of UCG and considers the opportunities, challenges, risks, competitive analysis and synergies, commercial initiatives and a roadmap to solutions via the modelling and simulation of UCG. Building and then disseminating the fundamental knowledge of UCG will enhance policy development, best practices and processes that reflect the global desires for energy production with reduced environmental impact.  相似文献   
498.
499.
500.
In recent years, increasing awareness of the environmental impact of heavy metals has prompted a demand for monitoring and decontaminating industrial wastes prior to discharging into natural water bodies. This paper describes the preparation and electrochemical application of carbon paste electrode modified with nanocellulosic fibers for the determination of cadmium and lead in water samples using anodic stripping voltammetry. First, cadmium and lead were adsorbed on the carbon paste electrode surface at open circuit potential, followed by anodic stripping voltammetric scan from -1 to 0 V. Different factors affecting sensitivity and precision of the electrode, including accumulating solvent, pH of the accumulating solvent, accumulation time, supporting electrolyte, and scan rate were investigated. The proposed method was also applied to the determination of Cd (II) and Pb (II) in the presence of other interfering metal ions and cetyl trimethyl ammonium bromide, sodium dodecyl sulfate, and Triton X-100 as a representative of cationic, anionic, and neutral surfactants. Linear calibration curves were obtained in the concentration ranges of 150–650 μg?L?1 and 80–300 μg?L?1, respectively, for cadmium and lead at an accumulated time of 10 min with limits of detection 88 and 33 μg?L?1. Optimized working conditions are defined as acetate buffer of pH?5 as accumulating solvent, hydrochloric acid as supporting electrolyte, and scan rate 50 mV/s. This technique does not use mercury and therefore has a positive environmental benefit. The method is reasonably sensitive and selective and has been successfully applied to the determination of trace amounts of Cd (II) and Pb (II) in water samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号