首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   1篇
  国内免费   2篇
安全科学   7篇
废物处理   9篇
环保管理   19篇
综合类   14篇
基础理论   31篇
污染及防治   55篇
评价与监测   28篇
社会与环境   6篇
  2023年   4篇
  2022年   7篇
  2021年   5篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   24篇
  2012年   9篇
  2011年   9篇
  2010年   9篇
  2009年   6篇
  2008年   15篇
  2007年   7篇
  2006年   6篇
  2005年   11篇
  2004年   5篇
  2003年   8篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1985年   1篇
  1978年   1篇
  1970年   1篇
  1965年   1篇
  1963年   2篇
排序方式: 共有169条查询结果,搜索用时 10 毫秒
41.
Singh RP  Agrawal M 《Chemosphere》2007,67(11):2229-2240
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios.

The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil.

The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading to reductions in morphological characteristics, biomass accumulation and yield. The study concludes that sewage sludge amendment in soil for growing palak may not be a good option due to risk of contamination of Cd, Ni and Zn and also due to lowering of yield at higher mixing ratio.  相似文献   

42.
Sorption of metsulfuron-methyl and sulfosulfuron were studied in five Indian soils using batch sorption method. Freundlich adsorption equation described the sorption of herbicides with K(f) (adsorption coefficient) values ranging between 0.21 and 1.88 (metsulfuron-methyl) and 0.37 and 1.17 (sulfosulfuron). Adsorption isotherms were L-type suggesting that the herbicides sorption decreased with increase in the initial concentration of the herbicide in the solution. The K(f) for metsulfuron-methyl showed good positive correlation with silt content (significant at p = 0.01) and strong negative correlation with the soil pH (significant at p = 0.05) while sorption of sulfosulfuron did not correlate with any of the soil parameter. Desorption of herbicides was concentration dependent and, in general, sulfosulfuron showed higher desorption than the metsulfuron-methyl. The study indicates that these herbicides are poorly sorbed in the Indian soil types and there may be a possibility of their leaching to lower soil profiles.  相似文献   
43.
Ameliorative effects of ethylenediurea (N-[2-(2-oxo-1-imidazolinidyl) ethyl]-N′ phenylurea, abbreviated as EDU) against ozone stress were studied on selected growth, biochemical, physiological and yield characteristics of palak (Beta vulgaris L. var Allgreen) plants grown in field at a suburban site of Varanasi, India. Mean eight hourly ozone concentration varied from 52 to 73 ppb which was found to produce adverse impacts on plant functioning and growth characteristics. The palak plants were treated with 300 ppm EDU at 10 days after germination at 10 days interval up to the plant maturity. Lipid peroxidation in EDU treated plants declined significantly as compared to non-EDU treated ones. Significant increment in Fv/Fm ratio in EDU treated plants as compared to non-EDU treated ones was recorded. EDU treated plants showed significant increment in ascorbic acid contents and reduction in peroxidase activity as compared to non-EDU treated ones. As a result of the protection provided by EDU against ozone induced stress on biochemical and physiological characteristics of palak, the morphological parameters also responded positively. Significant increments were recorded in shoot length, number of leaves plant−1, leaf area and root and shoot biomass of EDU treated plants as compared to non-EDU treated ones. Contents of Na, K, Ca, Mg and Fe were higher in EDU treated plants as compared to non-EDU treated ones. The present investigation proves the usefulness of EDU in partially ameliorating ozone injury in ambient conditions.  相似文献   
44.
45.
Assessment of agropotentiality of the effluent coming out from century pulp and paper mill, Ghanshyamdham, Lalkua (Uttaranchal) has been made on wheat (Triticum aestivum var. UP-2329) crop grown in two soils differing in texture with different effluent concentrations. Diluted effluent increased the chlorophyll content, plant height, shoot and root biomass, grain yield, protein, carbohydrate and lipid contents in wheat grains, while undiluted effluent caused inhibition in plant growth resulting in a sharp decline of yield. Pure soil provided better growth and yield results than those soil mixed with sand.  相似文献   
46.
Antifungal activity (reduction in colony diameter) of various extracts (pt. ether, chloroform, ethyl acetate, ethyl alcohol and aqueous) of aerial and root parts of Boerhavia diffusa (Nictaginaceae) was screened against dermatophytic fungi Microsporum fulvum. Statistically significant increase has been recorded in the % inhibition of the target fungal species with increasing test concentrations (1000-5000 ppm) of chloroform, ethyl acetate and ethyl alcohol extracts of the root. The maximum % inhibition observed in various solvent extracts of root was about 26% (chloroform), 46% (ethyl alcohol) and 57% (ethyl acetate) at 5000 ppm concentration with time exposure of 10 days. The colony diameter of the target mycelial colony decreased with increasing supplementation of the phytoextract, showing the presence of significant amount of some antifungal phytochemical moiety.  相似文献   
47.
48.
Studies were conducted to analyze the residue of commonly used pesticides viz. methyl parathion, chloropyrifos, endosulfan, cypermethrin, fenvalerate, carbendazim, imidacloprid and carbaryl in mango, Dashehari variety, integrated pest management (IPM) and non-IPM samples were collected from the IPM and non-IPM orchards, Lucknow, India. We also present a method for the simultaneous determination of these pesticides in mango samples. Residues of methyl parathion, chloropyriphos, endosulfan, cypermethrin, fenvalerate were extracted from the samples with acetone: cyclohexane: ethyl acetate in the ratio 2:1:1 followed by cleanup using neutral alumina. Analysis was performed by gas chromatography-electron capture detector (GC-ECD) with a megabore column (OV-1). Residues of carbendazim, imidacloprid and carbaryl were extracted with acetone and after cleanup, analysis was performed by high performance liquid chromatography (HPLC) using photo diode array (PDA) detector. Recoveries of all the pesticides ranged between 72.7 – 110.6%, at 0.1 and 1.0 μg g? 1 level of fortification. The residues detected in non-IPM samples of mango were found to be below the prescribed limits of maximum residue limit (MRL) while IPM samples were free from pesticide residues.  相似文献   
49.
This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15–92%, whereas with the Kota fly ash an increase in sorption by 13–38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to Kf/Kd values, KFA values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil.  相似文献   
50.
Biodiversity loss is proceeding at an unprecedented rate, yet we lack a thorough understanding of the consequences of losing diversity at different scales. While species diversity is known to impact community and ecosystem processes, genotypic diversity is assumed to have relatively smaller effects. Nonetheless, a few recent studies suggest that genotypic diversity may have quantitatively similar ecological consequences compared to species diversity. Here we show that increasing either genotypic diversity of common evening primrose (Oenothera biennis) or species diversity of old-field plant species resulted in nearly equivalent increases (approximately 17%) in aboveground primary production. The predominant mechanism explaining this effect, niche complementarity, was similar for each type of diversity. Arthropod species richness also increased with both types of plant diversity, but the mechanisms leading to this effect differed: abundance-driven accumulation of arthropod species was important in plant genotypic polycultures, whereas resource specialization was important in plant species polycultures. Thus, similar increases in primary productivity differentially impacted higher trophic levels in response to each type of plant diversity. These results highlight important ecological similarities and differences between genotypic and species diversity and suggest that genotypic diversity may play a larger role in community and ecosystem processes than previously realized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号